The conjugate addition reactions of four organolithium reagents to 2,3,4,5-tetraphenylcyclopentadienone (tetracyclone) were investigated to reveal the reactivity of organolithium reagents to tetracyclone. The results show that 1,2-addition products 2,3,4,5-tetraphenyl-1-(2-thienyl)-2,4-cyclopentadien-1-ol(1), 1-n-butyl-2,3,4,5-tetraphenyl-2,4-cyclopentadien-1-ol(2) and 1,2,3,4,5-pentaphenyl-2,4-cyclopentadien-1-ol(3) were synthesized in excellent yields while tetracyclone reacted with 2-thienyllithium, n-butyllithium and phenyllithium, respectively. Interestingly, three 1,2-, 1,4- and 1,6-addition isomers 1-tert-butyl-2,3,4,5-tetraphenyl-2,4-cyclopentadien-1-ol(4), 4-tert-butyl-2,3,4,5-tetraphenyl-2-cyclopenten-l-one(5) and 2-tert-butyl-2,3,4,5-tetraphenyl-3-cyclopenten-l-one(6), were simultaneously obtained by the conjugate addition reaction of tert-butyllithium with larger steric hindrance to tetracyclone. Compounds 1-6 were characterized by 1H and 13C NMR spectra, Fourier transform infrared(FTIR) spectra and mass spectra(MS). The crystal and molecular structures of compounds 1, 2 and isomers 5, 6 were determined by X-ray single crystal diffraction technique. The results imply that the steric hindrance of tert-butyllithium probably play a key role in controlling the conjugate addition reaction. The conjugate addition mechanism of organolithium reagents to tetracyclone was proposed.