Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6): 1467-1474.doi: 10.1007/s40242-022-2047-4
• Articles • Previous Articles Next Articles
CHEN Liquan1, LI Dawei2, REN Jinghan1, LI Yameng2, GAO Dong1, XING Chengfen1,2
Received:
2022-02-08
Online:
2022-12-01
Published:
2022-12-06
Contact:
GAO Dong, XING Chengfen
E-mail:gaodong@iccas.ac.cn;xingc@hebut.edu.cn
Supported by:
CHEN Liquan, LI Dawei, REN Jinghan, LI Yameng, GAO Dong, XING Chengfen. Side Chain Functional Conjugated Porous Polymers for NIR Controlled Carbon Dioxide Adsorption and Release[J]. Chemical Research in Chinese Universities, 2022, 38(6): 1467-1474.
[1] Jung J. P., Park C. H., Lee J. H., Bae Y.-S., Kim J. H., Chemical Engineering Journal, 2017, 313, 1615; [2] Sharma P., Choi S.-H., Park S.-D., Baek I.-H., Lee G.-S., Chemical Engineering Journal, 2012, 181/182, 834; [3] Markewitz P., Kuckshinrichs W., Leitner W., Linssen J., Zapp P., Bongartz R., Schreiber A., Müller T. E., Energy & Environmental Science, 2012, 5, 7281; [4] Wang H., Jiang D., Huang D., Zeng G., Xu P., Lai C., Chen M., Cheng M., Zhang C., Wang Z., Journal of Materials Chemistry A, 2019, 7, 22848; [5] Kupgan G., Abbott L. J., Hart K. E., Colina C. M., Chemical Reviews, 2018, 118, 5488; [6] Krause S., Bon V., Senkovska I., Stoeck U., Wallacher D., Többens D. M., Zander S., Pillai R. S., Maurin G., Coudert F.-X., Kaskel S., Nature, 2016, 532, 348; [7] Creamer A. E., Gao B., Environmental Science & Technology, 2016, 50, 7276; [8] Tiainen T., Mannisto J. K., Tenhu H., Hietala S., Langmuir, 2021, doi:10.1021/acs. langmuir.lc02321; [9] Huang R., Hill M. R., Babarao R., Medhekar N. V., The Journal of Physical Chemistry C, 2016, 120, 16658; [10] Zhou X., Wan L., Long Z., Li D., Liang D., Energy & Fuels, 2019, 33, 6727; [11] Zhou X., Liang D., Chemical Engineering Journal, 2019, 378, 122128; [12] Olajire A. A., Journal of CO2 Utilization, 2017, 17, 137; [13] Gao H., Li Q., Ren S., Current Opinion in Green and Sustainable Chemistry, 2019, 16, 33; [14] Ozdemir J., Mosleh I., Abolhassani M., Greenlee L. F., Beitle R. R., Beyzavi M. H., Frontiers in Energy Research, 2019, 7, Article 77; [15] Zeng Y., Zou R., Zhao Y., Advanced Materials, 2016, 28, 2855; [16] Kaleeswaran D., Antony R., Sharma A., Malani A., Murugavel R., ChemPlusChem, 2017, 82, 1253; [17] Li Y., Zhang J., Zuo K., Li Z., Wang Y., Hu H., Zeng C., Xu H., Wang B., Gao Y., Catalysts, 2021, 11, 1133; [18] Wang Y., Kang C., Zhang Z., Usadi A. K., Calabro D. C., Baugh L. S., Yuan Y. D., Zhao D., ACS Sustainable Chemistry & Engineering, 2022, 10, 332; [19] Kim J., Lin L.-C., Swisher J. A., Haranczyk M., Smit B., Journal of the American Chemical Society, 2012, 134, 18940; [20] Wang B., Côté A. P., Furukawa H., O'Keeffe M., Yaghi O. M., Nature, 2008, 453, 207; [21] To J. W. F., He J., Mei J., Haghpanah R., Chen Z., Kurosawa T., Chen S., Bae W.-G., Pan L., Tok J. B. H., Wilcox J., Bao Z., Journal of the American Chemical Society, 2016, 138, 1001; [22] Gopinath K. P., Vo D.-V. N., Gnana Prakash D., Adithya Joseph A., Viswanathan S., Arun J., Environmental Chemistry Letters, 2021, 19, 557; [23] Durá G., Budarin V. L., Castro-Osma J. A., Shuttleworth P. S., Quek S. C. Z., Clark J. H., North M., Angewandte Chemie International Edition, 2016, 55, 9173; [24] Wang D., Liao S., Zhang S., Wang Y., ChemSusChem, 2017, 10, 2573; [25] Zelenak V., Halamova D., Gaberova L., Bloch E., Llewellyn P., Microporous and Mesoporous Materials, 2008, 116, 358; [26] Zhao C., Chen X., Zhao C., Energy & Fuels, 2010, 24, 1009; [27] Liu Y.-G., Liu G., Tan P., Gu C., Li J.-J., Liu X.-Q., Sun L.-B., Chemical Engineering Journal, 2021, 420, 130490; [28] Zhao H.-Y., Cao Y., Lineberry Q., Pan W.-P., Journal of Thermal Analysis and Calorimetry, 2011, 106, 199; [29] Cheng P., Li G., Zhan X., Yang Y., Nature Photonics, 2018, 12, 131; [30] He Y., Cao Y., Wang Y., Asian Journal of Organic Chemistry, 2018, 7, 2201; [31] Wang Y., Meng H.-M., Song G., Li Z., Zhang X.-B., ACS Applied Polymer Materials, 2020, 2, 4258; [32] Guo B., Sheng Z., Hu D., Li A., Xu S., Manghnani P. N., Liu C., Guo L., Zheng H., Liu B., ACS Nano, 2017, 11, 10124; [33] Xiao L., Chen X., Yang X., Sun J., Geng J., ACS Applied Polymer Materials, 2020, 2, 4273; [34] Zhang G., Ma S., Wang W., Zhao Y., Ruan J., Tang L., Lu H., Qiu L., Ding Y., Frontiers in Chemistry, 2019, 7; [35] Li B., Ren S., Gao D., Li N., Wu M., Yuan H., Zhou M., Xing C., Advanced Healthcare Materials, 2021, n/a, 2102506; [36] Pei S., International Journal of Electrochemical Science, 2019, 14, 6643; [37] Goker S., Hizalan G., Aktas E., Kutkan S., Cirpan A., Toppare L., New Journal of Chemistry, 2016, 40, 10455; [38] Huang F., Chen K.-S., Yip H.-L., Hau S. K., Acton O., Zhang Y., Luo J., Jen A. K. Y., Journal of the American Chemical Society, 2009, 131, 13886; [39] Guo Y., Xia D., Liu B., Wu H., Li C., Tang Z., Xiao C., Li W., Macromolecules, 2019, 52, 8367; [40] Dupont A., Eastoe J., Martin L., Steytler D. C., Heenan R. K., Guittard F., Taffin de Givenchy E., Langmuir, 2004, 20, 9960; [41] Lee J. J., Cummings S. D., Beckman E. J., Enick R. M., Burgess W. A., Doherty M. D., O'Brien M. J., Perry R. J., The Journal of Supercritical Fluids, 2017, 119, 17; [42] Rizvi A., Tabatabaei A., Barzegari M. R., Mahmood S. H., Park C. B., Polymer, 2013, 54, 4645; [43] Lee J. H., Jung J. P., Jang E., Lee K. B., Kang Y. S., Kim J. H., Journal of Membrane Science, 2016, 502, 191; [44] Plonka A. M., Banerjee D., Woerner W. R., Zhang Z., Nijem N., Chabal Y. J., Li J., Parise J. B., Angewandte Chemie International Edition, 2013, 52, 1692; [45] Kanoo P., Reddy S. K., Kumari G., Haldar R., Narayana C., Balasubramanian S., Maji T. K., Chemical Communications, 2012, 48, 8487; [46] Rao K. V., Mohapatra S., Kulkarni C., Maji T. K., George S. J., Journal of Materials Chemistry, 2011, 21, 12958; [47] Bhunia A., Esquivel D., Dey S., Fernández-Terán R., Goto Y., Inagaki S., Van Der Voort P., Janiak C., Journal of Materials Chemistry A, 2016, 4, 13450; [48] Saleque A. M., Nowshin N., Ivan M. N. A. S., Ahmed S., Tsang Y. H.,Solar RRL, 2022, 2100986; [49] Guan X., Ma Y., Li H., Yusran Y., Xue M., Fang Q., Yan Y., Valtchev V., Qiu S., Journal of the American Chemical Society, 2018, 140, 4494; [50] Gui B., Liu X., Cheng Y., Zhang Y., Chen P., He M., Sun J., Wang C., Angewandte Chemie International Edition, 2022, 61, e202113852; [51] Neti V. S. P. K., Wang J., Deng S., Echegoyen L., RSC Advances, 2015, 5, 10960; [52] Li Z., Zhi Y., Feng X., Ding X., Zou Y., Liu X., Mu Y., Chemistry:A European Journal, 2015, 21, 12079; [53] Tarzia A., Thornton A. W., Doonan C. J., Huang D. M., The Journal of Physical Chemistry C, 2017, 121, 16381; [54] Trewin A., Cooper A. I., Angewandte Chemie International Edition, 2010, 49, 1533; [55] Jiang J.-X., Trewin A., Su F., Wood C. D., Niu H., Jones J. T. A., Khimyak Y. Z., Cooper A. I., Macromolecules, 2009, 42, 2658; [56] Suresh V. M., Bonakala S., Roy S., Balasubramanian S., Maji T. K., The Journal of Physical Chemistry C, 2014, 118, 24369; [57] Li R., Zhang C., Cui C.-X., Hou Y., Niu H., Tan C.-H., Yang X., Huang F., Jiang J.-X., Zhang Y., Polymer, 2022, 240, 124509; [58] Qian C., Zhou W., Qiao J., Wang D., Li X., Teo W. L., Shi X., Wu H., Di J., Wang H., Liu G., Gu L., Liu J., Feng L., Liu Y., Quek S. Y., Loh K. P., Zhao Y., Journal of the American Chemical Society, 2020, 142, 18138; [59] Ichikawa M., Wakabayashi K., Hayashi S., Yokoyama N., Koyama T., Taniguchi Y., Organic Electronics, 2010, 11, 1966; [60] Bai Y., Nguyen L., Song Z., Peng S., Lee J., Zheng N., Kapoor I., Hagler L. D., Cai K., Cheng J., Chan H. Y. E., Zimmerman S. C., Journal of the American Chemical Society, 2016, 138, 9498; [61] Roper D. K., Ahn W., Hoepfner M., J. Phys. Chem. C, 2007, 111(a), 3636; [62] Yao J., Yu C., Liu Z., Luo H., Yang Y., Zhang G., Zhang D., Journal of the American Chemical Society, 2016, 138, 173; [63] Khelifa A., Benchehida L., Derriche Z., Journal of Colloid and Interface Science, 2004, 278, 9 |
[1] | REN Fengdi, GAO Qiqin, CHEN Yuzhen. MxCo3O4/g-C3N4 Derived from Bimetallic MOFs/g-C3N4 Composites for Styrene Epoxidation by Synergistic Photothermal Catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1361-1367. |
[2] | WANG Tianxiong, MU Zhenjie, DING Xuesong and HAN Baohang. Functionalized COFs with Quaternary Phosphonium Salt for Versatilely Catalyzing Chemical Transformations of CO2 [J]. Chemical Research in Chinese Universities, 2022, 38(2): 446-455. |
[3] | HUANG Jin, CAI Yichen, YU Yulv, WANG Yuan. Conversion of CO2 to Multi-carbon Compounds over a CoCO3 Supported Ru-Pt Catalyst Under Mild Conditions [J]. Chemical Research in Chinese Universities, 2022, 38(1): 223-228. |
[4] | LI Jing-Hong, XIE Yi, ZHOU Mu-Yang, LIN Rui-Biao, CHEN Xiao-Ming. Microporous Zinc Formate for Efficient Separation of Acetylene over Carbon Dioxide [J]. Chemical Research in Chinese Universities, 2022, 38(1): 87-91. |
[5] | FU Xinliang, ZHU Aonan, CHEN Xiaojie, ZHANG Shifu, WANG Mei, YUAN Mingjian. Stabilization of Cu/Ni Alloy Nanoparticles with Graphdiyne Enabling Efficient CO2 Reduction [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1328-1333. |
[6] | YU Xinyue, ZHONG Yao, SUN Yu, CHEN Yanwei. Controllable Preparation of Plasmonic Gold Nanostars for Enhanced Photothermal and SERS Effects [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1284-1291. |
[7] | YANG Chan, CHAI Jiaxin, WANG Zhe, XING Yonglei, PENG Juan, YAN Qingyu. Recent Progress on Bismuth-based Nanomaterials for Electrocatalytic Carbon Dioxide Reduction [J]. Chemical Research in Chinese Universities, 2020, 36(3): 410-419. |
[8] | DONG Shujun, WANG Lin, LI Qiushi, CHEN Xuesi, LIU Shujie, ZHOU Yanmin. Poly (L-lactide)-grafted Bioglass/Poly (lactide-co-glycolide) Scaffolds with Supercritical CO2 Foaming Reprocessing for Bone Tissue Engineering [J]. Chemical Research in Chinese Universities, 2017, 33(3): 499-506. |
[9] | LIU Li, LIN Maohai, LIU Zhongbo, SUN Honggang, ZHAO Xian. Density Functional Theory Study of CO2 and H2O Adsorption on a Monoclinic WO3(001) Surface [J]. Chemical Research in Chinese Universities, 2017, 33(2): 255-260. |
[10] | BEN Shunge, YUAN Fulong, ZHU Yujun. Effect of Zr Addition on Catalytic Performance of Cu-Zn-Al Oxides for CO2 Hydrogenation to Methanol [J]. Chemical Research in Chinese Universities, 2016, 32(6): 1005-1009. |
[11] | ZHU Guo-wei, CHEN Xiao-bo, JIANG Hong, HUANG Jian, WANG Run-wei, QIU Shi-lun. Synthesis and Characterization of TS-1 with Aid of Supercritical CO2 [J]. Chemical Research in Chinese Universities, 2013, 29(6): 1036-1039. |
[12] | XU Dong, ZHANG Jun, LI Gang, XIAO Penny, ZHAI Yu-chun. Separation of H2O/CO2 Mixtures with Layered Adsorption Method for Greenhouse Gas Control [J]. Chemical Research in Chinese Universities, 2012, 28(1): 129-132. |
[13] | ZHANG Li, WANG Huan*, ZHAO Jian-qing, CHEN Bao-li and LU Jia-xing. Electrocarboxylation of Anthrone to Anthracene-9-carboxylic Acid in the Presence of CO2 [J]. Chemical Research in Chinese Universities, 2011, 27(6): 1027-1030. |
[14] | WANG Lin, LUO Jian-cheng, YANG Hao and CHEN Kai-xun*. Vapor-liquid Phase Equilibria for CO2+Tertpentanol Binary System at Elevated Pressures [J]. Chemical Research in Chinese Universities, 2011, 27(4): 678-682. |
[15] | WEN Zhen*, YOU Xin-kui, LIU Bo, ZHENG Zong-kun, PU Yi-tao and LI Qiong. Self-assembly of Liposomes Loading Hinesol by Rapid Expansion from Supercritical to Surfactant Solution [J]. Chemical Research in Chinese Universities, 2010, 26(4): 617-621. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||