Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3): 410-419.doi: 10.1007/s40242-020-0069-3
• Reviews • Previous Articles Next Articles
YANG Chan1, CHAI Jiaxin1, WANG Zhe2, XING Yonglei1, PENG Juan1,2, YAN Qingyu2,3
Received:
2020-03-23
Revised:
2020-04-27
Online:
2020-06-01
Published:
2020-05-30
Contact:
PENG Juan, YAN Qingyu
E-mail:alexyan@ntu.edu.sg;pengjuan@nxu.edu.cn
Supported by:
YANG Chan, CHAI Jiaxin, WANG Zhe, XING Yonglei, PENG Juan, YAN Qingyu. Recent Progress on Bismuth-based Nanomaterials for Electrocatalytic Carbon Dioxide Reduction[J]. Chemical Research in Chinese Universities, 2020, 36(3): 410-419.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Spinner N. S., Vega J. A., Mustain W. E., Catal. Sci. Technol., 2012, 2(1), 19 |
[2] | Xie S. F., Peng H.-C., Lu N., Wang J. G., Kim M. J., Xie Z. X., Xia Y. N., J. Am. Chem. Soc., 2013, 135(44), 16658 |
[3] | Wu M. G., Liao J. Q., Yu L. X., Lv R. T., Li P., Sun W. P., Tan R., Duan X. C., Zhang L., Li F., Kim J., Shin K. H., Seok P. H., Zhang W. C., Guo Z. P., Wang H. T., Tang Y. P., Gorgolis G., Galiotis C., Ma J. M., Chem:Asian J., 2020, 15(7), 995 |
[4] | Lam M. K., Lee K. T., Biotechnol. Adv., 2012, 30(3), 673 |
[5] | Fiorani G., Guo W., Kleij A. W., Green Chem., 2015, 17(3), 1375 |
[6] | Alissandratos A., Easton C. J., Beilstein J. Org. Chem., 2015, 11, 2370 |
[7] | Hao J. H., Shi W. D., Chinese J. Catal., 2018, 39(7), 1157 |
[8] | Mao X. W., Hatton T. A., Ind. Eng. Chem. Res., 2015, 54(16), 4033 |
[9] | Zhang Y., Zhang X. L., Ling Y. Z., Li F. W., Bond A.M., Zhang J., Angew. Chem., 2018, 130(40), 13467 |
[10] | Wu M. G., Xu B. L., Zhang Y. F., Qi S. H., Ni W., Hu J., Ma J. M., Chem. Eng. J., 2020, 381, 122558 |
[11] | Wang Z. L., Li C. L., Yamauchi Y., Nano Today, 2016, 11(3), 373 |
[12] | Kuhl K. P., Hatsukade T., Cave E. R., Abram D. N., Kibsgaard J., Jaramillo T. F., J. Am. Chem. Soc., 2014, 136(40), 14107 |
[13] | Costentin C., Robert M., Savéant J.-M., Chem. Soc. Rev., 2013, 42(6), 2423 |
[14] | Gao D. F., Zhou H., Wang J., Miao S., Yang F., Wang G. X., Wang J. G., Bao X. H., J. Am. Chem. Soc., 2015, 137(13), 4288 |
[15] | Gao D. F., Zhou H., Cai F., Wang J. G., Wang G. X., Bao X. H., ACS Catal., 2018, 8, 1510 |
[16] | Tao H. C., Zhang Y. Q., Gao Y. N., Sun Z. Y., Yan C., Texter J., Phys. Chem. Chem. Phys., 2017, 19(2), 921 |
[17] | Zhu D. D., Liu J. L., Qiao S. Z., Adv. Mater., 2016, 28(18), 3423 |
[18] | Yoo J. S., Christensen R., Vegge T., Norskov J. K., Studt F., ChemSusChem, 2016, 9(4), 358 |
[19] | Yang Y. L., Tang Y., Jiang H. M., Chen Y. M., Wan P. Y., Fan M, H., Zhang R. R., Ullah S., Pan L., Zou J.-J., Lao M. M., Sun W. P., Yang C., Zheng G. F., Peng Q. L., Wang T., Luo Y. L., Sun X. P., Konev A. S., Levin O. V., Lianos P., Hu Z. F., Shen Z. R., Zhao Q. L., Wang Y., Todrova N., Trapalis C., Sheridan M. V., Wang H. P., Zhang L., Sun S. M., Wang W. Z., Ma J. M., Chin. Chem. Lett., 2019, 30(12), 2089 |
[20] | Lim R. J., Xie M. S., Sk M. A., Lee J.-M., Fisher A., Wang X., Lim K. H., Catal. Today, 2014, 233, 169 |
[21] | Kortlever R., Shen J., Schouten K. J. P., Calle-Vallejo F., Koper M. T. M., J. Phys. Chem. Lett., 2015, 6(20), 4073 |
[22] | Wu J. H., Huang Y., Ye W., L, Y. G., Adv. Sci., 2017, 4(11), 1700194 |
[23] | Schneider J., Jia H., Muckerman J. T., Fujita E., Chem. Soc. Rev., 2012, 41(6), 2036 |
[24] | Benson E. E., Kubiak C. P., Sathrum A. J., Smieja J. M., Chem. Soc. Rev., 2009, 38(1), 89 |
[25] | Kondratenko E. V., Mul G., Baltrusaitis J., Larrazábal G. O., Pérez-Ramírez J., Energy Environ. Sci., 2013, 6(11), 3112 |
[26] | Wang Y., Zhu X. R., Li Y. F., J. Phys. Chem. Lett., 2019, 10(16), 4663 |
[27] | Safizadeh F., Ghali E., Houlachi G., Int. J. Hydrog. Energy, 2015, 40(1), 256 |
[28] | Shinagawa T., Garcia-Esparza A. T., Takanabe K., Sci. Rep., 2015, 5(1), 13801 |
[29] | Garsany Y., Baturina O. A., Swider-Lyons K. E., Kocha S. S., Anal. Chem., 2010, 82(15), 6321 |
[30] | Neubauer S. S., Krause R. K., Schmid B., Guldi D. M., Schmid G., Adv. Energy Mater., 2016, 6(9), 1502231 |
[31] | Sun J. F., Wang J. Q., Li Z. P., Yang Z. G., Yang S. R., RSC Adv., 2015, 5(64), 51773 |
[32] | Wu J. G., Fan Z., Xiao D. Q., Zhu J. G., Wang J., Prog. Mater. Sci., 2016, 84, 335 |
[33] | Han N., Wang Y., Yang H., Deng J., Wu J. H., Li Y. F., Li Y. G., Nat. Commun., 2018, 9(1), 1320 |
[34] | Cui H. J., Guo Y. B., Guo L., Wang L., Zhou Z., Peng Z. Q., J. Mater. Chem. A, 2018, 6(39), 18782 |
[35] | Khezri B., Fisher A. C., Pumera M., J. Mater. Chem. A, 2017, 5(18), 8230 |
[36] | Lu Q., Jiao F., Nano Energy, 2016, 29, 439 |
[37] | Aneke M., Wang M., Appl. Energy, 2016, 179, 350 |
[38] | Panwar N. L., Kaushik S. C., Kothari S., Renew. Sust. Energ. Rev., 2011, 15(3), 1513 |
[39] | Ismail A. A., Bahnemann D. W., Sol. Energy Mater. Sol. Cells, 2014, 128, 85 |
[40] | Xu K., Wang L., Xu X., Dou S. X., Hao W. C., Du Y., Energy Stor. Mater., 2019, 19, 446 |
[41] | Abraham B. G., Maniam K. K., Kuniyil A., Chetty R., Fuel Cells, 2016, 16(5), 656 |
[42] | Yoshio H., Katsuhei K., Akira M., Shin S., Chem. Lett., 1986, 15(6), 897 |
[43] | Zhong H. X., Qiu Y. L., Zhang T. T., Li X. F., Zhang H. M., Chen X. B., J. Mater. Chem. A, 2016, 4(36), 13746 |
[44] | Zhang Z. Y., Chi M. F., Veith G. M., Zhang P. F., Lutterman D. A., Rosenthal J., Overbury S. H., Dai S., Zhu H. Y., ACS Catal., 2016, 6(9), 6255 |
[45] | Kim S., Dong W. J., Gim S., Sohn W., Park J. Y., Yoo C. J., Jang H. W., Lee J.-L., Nano Energy, 2017, 39, 44 |
[46] | Medina-Ramos J., Lee S. S., Fister T. T., Hubaud A. A., Sacci R. L., Mullins D. R., DiMeglio J. L., Pupillo R. C., Velardo S. M., Lutterman D. A., Rosenthal J., Fenter P., ACS Catal., 2017, 7(10), 7285 |
[47] | Koh J. H., Won D. H., Eom T., Kim N.-K., Jung K. D., Kim H., Hwang Y. J., Min B. K., ACS Catal., 2017, 7(8), 5071 |
[48] | Su P. P., Xu W. B., Qiu Y. L., Zhang T. T., Li X. F., Zhang H. M., ChemSusChem, 2018, 11(5), 848 |
[49] | Qiu Y., Du J., Dai C. N., Dong W., Tao C. Y., J. Electrochem. Soc., 2018, 165(10), 594 |
[50] | Garcia de Arquer F. P., Bushuyev O. S., De Luna P., Dinh C. T., Seifitokaldani A., Saidaminov M. I., Tan C. S., Quan L. N., Proppe A., Kibria M. G., Kelley S. O., Sinton D., Sargent E. H., Adv. Mater., 2018, 30(38), e1802858 |
[51] | Gong Q. F., Ding P., Xu M. Q., Zhu X. R., Wang M. Y., Deng J., Ma Q., Han N., Zhu Y., Lu J., Feng Z. X., Li Y. F., Zhou W., Li Y. G., Nat. Commun., 2019, 10(1), 2807 |
[52] | Deng P. L., Wang H. M., Qi R. J., Zhu J. X., Chen S. H., Yang F., Zhou L., Qi K., Liu H. F., Xia B.Y., ACS Catal., 2019, 10(1), 743 |
[53] | Gao T. F., Wen X. M., Xie, T. H., Han N. N., Sun K., Han L., Wang H. C., Zhang Y., Kuang Y., Sun X. M., Electrochim. Acta, 2019, 305, 388 |
[54] | Sun X. F., Zhu Q. Q., Kang X. C., Liu H. Z., Qian Q. L., Zhang Z. F., Han B. X., Angew. Chem. Int. Ed., 2016, 55(23), 6771 |
[55] | Lv W. X., Zhou J., Bei J. J., Zhang R., Wang L., Xu Q., Wang W., Appl. Sur. Sci., 2017, 393, 191 |
[56] | Hoffman Z. B., Gray T. S., Xu Y., Lin Q. Y., Gunnoe T. B., Zangari G., ChemSusChem., 2019, 12(1), 231 |
[57] | Jia L., Yang H., Deng J., Chen J. M., Zhou Y., Ding P., Li L. G., Han N., Li Y. G., Chinese J. Chem., 2019, 37(5), 497 |
[58] | Medina-Ramos J., DiMeglio J. L., Rosenthal J., J. Am. Chem. Soc., 2014, 136(23), 8361 |
[59] | Lee C. W., Hong J. S., Yang K. D., Jin K., Lee J. H., Ahn H.-Y., Seo H., Sung N.-E., Nam K. T., ACS Catal., 2018, 8(2), 931 |
[60] | Zhang E. H., Wang T., Yu K., Liu J., Chen W. X., Li A., Rong H. P., Lin R., Ji S. F., Zheng X. S., Wang Y., Zheng L. R., Chen C., Wang D. S., Zhang J. T., Li Y. D., J. Am. Chem. Soc., 2019, 141(42), 16569 |
[61] | An X. W., Li S. S., Yoshida A., Yu T., Wang Z. D., Hao X. G., Abudula A., Guan G. Q., ACS Appl. Mater. Interfaces., 2019, 11(45), 42114 |
[1] | MA Chunrong, SONG Bingyi, MA Zhentao, WANG Xiaoqian, TIAN Lin, ZHANG Haoran, CHEN Cai, ZHENG Xusheng, YANG Li-ming, WU Yuen. A Supported Palladium on Gallium-based Liquid Metal Catalyst for Enhanced Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1219-1225. |
[2] | ZHU Junlun, CUI Qian, WEN Wei, ZHANG Xiuhua, WANG Shengfu. Cu/CuO-Graphene Foam with Laccase-like Activity for Identification of Phenolic Compounds and Detection of Epinephrine [J]. Chemical Research in Chinese Universities, 2022, 38(4): 919-927. |
[3] | HUANG Qin, LIU Xin, ZHANG Pengge, WU Zhan, ZHAO Zilong. A DNA Nano-train Carrying a Predefined Drug Combination for Cancer Therapy [J]. Chemical Research in Chinese Universities, 2022, 38(4): 928-934. |
[4] | CHENG Dajun, and MENG Xiangju. Recent Advances of Beta Zeolite in the Volatile Organic Compounds(VOCs) Elimination by the Catalytic Oxidations [J]. Chemical Research in Chinese Universities, 2022, 38(3): 716-722. |
[5] | HAO Zhimin, LIU Dapeng, GE Huaiyun, ZUO Xintao, FENG Xilan, SHAO Mingzhe, YU Haohan, YUAN Guobao, and ZHANG Yu. Preparation of Quaternary FeCoMoCu Metal Oxides for Oxygen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(3): 823-828. |
[6] | HUANG Jin, CAI Yichen, YU Yulv, WANG Yuan. Conversion of CO2 to Multi-carbon Compounds over a CoCO3 Supported Ru-Pt Catalyst Under Mild Conditions [J]. Chemical Research in Chinese Universities, 2022, 38(1): 223-228. |
[7] | FU Xinliang, ZHU Aonan, CHEN Xiaojie, ZHANG Shifu, WANG Mei, YUAN Mingjian. Stabilization of Cu/Ni Alloy Nanoparticles with Graphdiyne Enabling Efficient CO2 Reduction [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1328-1333. |
[8] | LI Duo, WU Chao, TANG Xuehui, ZHANG Yue, WANG Tie. Electrochemical Sensors Applied for In vitro Diagnosis [J]. Chemical Research in Chinese Universities, 2021, 37(4): 803-822. |
[9] | HAN Lin, WANG Yuang, TANG Wantao, LIU Jianbing, DING Baoquan. Bioimaging Based on Nucleic Acid Nanostructures [J]. Chemical Research in Chinese Universities, 2021, 37(4): 823-828. |
[10] | WEN Jinguli, LI Yuwen, GAO Junkuo. Two-dimensional Metal-Organic Frameworks and Derivatives for Electrocatalysis [J]. Chemical Research in Chinese Universities, 2020, 36(4): 662-679. |
[11] | SUN Rongbo, GUO Wenxin, HAN Xiao, HONG Xun. Two-dimensional Noble Metal Nanomaterials for Electrocatalysis [J]. Chemical Research in Chinese Universities, 2020, 36(4): 597-610. |
[12] | WANG Hengliang, CHAI Luxiao, XIE Zhongjian, ZHANG Han. Recent Advance of Tellurium for Biomedical Applications [J]. Chemical Research in Chinese Universities, 2020, 36(4): 551-559. |
[13] | FANG Wensheng, HUANG Lei, ZAMAN Shahid, WANG Zhitong, HAN Youjia, XIA Bao Yu. Recent Progress on Two-dimensional Electrocatalysis [J]. Chemical Research in Chinese Universities, 2020, 36(4): 611-621. |
[14] | LEI Jia, ZENG Mengqi, FU Lei. Two-dimensional Metal-Organic Frameworks as Electrocatalysts for Oxygen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2020, 36(4): 504-510. |
[15] | DONG Wenfei, CHEN Xiaoyu, PENG Juan, LIU Wanyi, JIN Xiaoyong, NI Gang, LIU Zheng. Recent Progress on 2D Transition Metal Compounds-based Electrocatalysts for Efficient Nitrogen Reduction [J]. Chemical Research in Chinese Universities, 2020, 36(4): 648-661. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||