Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6): 1361-1367.doi: 10.1007/s40242-022-2292-6
• Articles • Previous Articles Next Articles
REN Fengdi, GAO Qiqin, CHEN Yuzhen
Received:
2022-09-26
Online:
2022-12-01
Published:
2022-12-06
Contact:
CHEN Yuzhen
E-mail:chenzhen1738@163.com
Supported by:
REN Fengdi, GAO Qiqin, CHEN Yuzhen. MxCo3O4/g-C3N4 Derived from Bimetallic MOFs/g-C3N4 Composites for Styrene Epoxidation by Synergistic Photothermal Catalysis[J]. Chemical Research in Chinese Universities, 2022, 38(6): 1361-1367.
[1] Tian S., Wang B., Gong W., He Z., Xu Q., Chen W., Zhang Q., Zhu Y., Yang J., Fu Q., Chen C., Bu Y., Gu L., Sun X., Zhao H., Wang D., Li Y., Nat. Commun., 2021, 12, 1; [2] Punniyamurthy T., Velusamy S., Iqbal J., Chem. Rev., 2005, 105, 2329; [3] Hu L., Yue B., Wang C., Chen X., He H., Applied Catalysis A:General, 2014, 477, 141; [4] Liu J., Meng R., Li J., Jian P., Wang L., Jian R., Appl. Catal. B:Environ., 2019, 254, 214; [5] Liu Y, Tsunoyama H., Akita T., Tsukuda T., Chem. Commun., 2010, 46, 550; [6] Choudhary V., Dumbre D., Patil N., Uphade B., Bhargava S., J. Catal., 2013, 300, 217; [7] Zhang D., Li H., Li G., Chen J., Dalton. Trans., 2009,10527; [8] Patil N., Uphade B., McCulloh D., Bhargava S., Choudhary V., Catal. Commun., 2004, 5, 681; [9] Hu X., Bai J., Hong H., Li C., Micropor. Mesopor. Mater., 2016, 228, 224; [10] Moon H., Limb A., Suh M., Chem. Soc. Rev., 2013, 42, 673; [11] Zhou H., Kitagawab S., Chem. Soc. Rev., 2014, 43, 5415; [12] Lee J., Farha O., Roberts J., Scheidt K., Hupp S., Chem. Soc. Rev., 2009, 38, 1450; [13] Liu W., Huang J., Yang Q., Wang S., Sun X., Zhang W., Liu J., Huo F., Angew. Chem. Int. Ed., 2017, 56, 5512; [14] Yu M., Space B., Franz D., Zhou W., He C., Li L., Krishna R., Chang Z., Li W., Hu T., Bu X., J. Am. Chem. Soc., 2019, 141, 17703; [15] Bao S., Li J., Guan B., Jia M., Terasaki O., Yu J., Matter, 2020, 3, 498; [16] Wen Y., Rentería-Gómez Á., Day G., Smith M., Yan T., Ozdemir R., Gutierrez O., Sharma V., Ma X., Zhou H., J. Am. Chem. Soc., 2022, 144, 11840; [17] Corma A., García H., Llabrés I., Chem. Rev., 2010, 110, 4606; [18] Gao J., Huang Q., Wu Y., Lan Y., Chen B., Adv. Energy. Sustain. Res., 2021, 2, 2100033; [19] Wang L., Li S., Chen Y., Jiang H., Small, 2021, 17, 2004481; [20] Sumida K., Rogow D., Mason J., McDonald T., Bloch E., Herm Z., Bae T., Long J., Chem. Rev., 2012, 112, 724; [21] Lee Y., Moon H., Cheon Y., Suh M., Angew. Chem. Int. Ed., 2008, 47, 7741; [22] Jaechul L., Chong Y., Jaheon K., Youngsuk K., Nakeun K., Seo Y., Kimoon K., Tae H., Lee E., Angew. Chem. Int. Ed., 2018, 57, 7869; [23] Kim E., Siegelman R., Jiang H., Forse A., Lee J., Martell J., Milner P., Falkowski J., Neaton J., Reimer J., Weston S., Long J., Science, 2020, 369, 392; [24] Zhang Z., Wang H., Li Y., Xie M., Li C., Lu H., Peng Y., Shi Z., Chem. Res. Chinese Universities, 2022, 38(4), 750; [25] Li S., Gao Y., Li N., Ge L., Bu X., Feng P., Energy Environ. Sci., 2021, 14, 1897; [26] Kaneti Y., Tang J., Salunkhe R., Jiang X., Yu A., Wu K., Yamauchi Y., Adv. Mater., 2017, 29, 1604898; [27] Gu Z., Li D., Zheng C., Kang Y., Wöll C., Zhang J., Angew. Chem. Int. Ed., 2017, 56, 6853; [28] Cao X., Tan C., Sindoro M., Zhang H., Chem. Soc. Rev., 2017, 46, 2660; [29] Lide O., Tim W., Xiao H., Kapteijn F., Gascon J., Mater. Chem. Front., 2017, 1, 1709; [30] Ma S., Goenaga G., Call A., Liu D., Chem. Eur. J., 2011, 17, 2063; [31] Hu M., Reboul J., Furukawa S., Torad N., Ji Q., Srinivasu P., Ariga K., Kitagawa S., Yamauchi Y., J. Am. Chem. Soc., 2012, 134, 2864; [32] Jiao L., Wan G., Zhang R., Zhou H., Yu S., Jiang H., Angew. Chem. Int. Ed., 2018, 57, 8525; [33] Shah S., Najam T., Wen M., Zang S., Waseem A., Jiang H., Small. Struct., 2022, 3, 2100090; [34] Jiao L., Zhang R., Wan G., Yang W., Wan X., Zhou H., Shui J., Yu S., Jiang H., Nat. Commun., 2020, 11, 2831; [35] Srinivas G., Krungleviciute V., Guo Z., Yildirim T., Energy Environ. Sci., 2014, 7, 335; [36] Kung C., Goswami S., Hod I., Wang T., Duan J., Farha O., Hupp J., Acc. Chem. Res., 2020, 53, 1187; [37] Jiang H., Liu B., Lan Y., Kuratani K., Akita T., Shioyama H., Zong F., Xu Q., J. Am. Chem. Soc., 2011, 133, 31,11854; [38] Zhang T., Lin W., Chem. Soc. Rev., 2014, 43, 5982; [39] Liu B., Shioyama H., Akita T., Xu Q., J. Am. Chem. Soc., 2008, 130, 5390; [40] Wang F., Li C., Chen H., Jiang R., Sun L., Li Q., Wang J., Yu J., Yan C., J. Am. Chem. Soc., 2013, 135, 5588; [41] Song S., Wang X., Li S., Wang Z., Zhu Q., Zhang H., Chem Sci., 2015, 6, 6420; [42] Zhang W., Wu Z., Jiang H., Yu S., J. Am. Chem. Soc., 2014, 136, 14385; [43] Zhi G., Yu X., Zhao D., Chem. Soc. Rev., 2021, 50, 4629; [44] Tang J., Salunkhe R., Liu J., Torad N., Imura M., Furukawa S., Yamauchi Y., J. Am. Chem. Soc., 2015, 137, 1572; [45] Xiao C., Lin Y., Zhang J., Chen X., Angew. Chem. Int. Ed., 2006, 45, 1557; [46] Li B., Liu J., Liu Q., Chen R., Zhang H., Yu J., Song D., Li J., Zhang M., Wang J., Appl. Surf. Sci., 2019, 475, 700; [47] Chen Y., Wang C., Wu Z., Xiong Y., Xu Q., Yu S., Jiang H., Adv. Mater., 2015, 27, 5010; [48] Zheng F., Yang Y., Chen Q., Nat. Commun., 2014, 5, 5261; [49] Zhang S., Guan B., Lu X., Xi S., Du Y., Lou X., Adv. Mater., 2020, 32, 2002235; [50] Rabani I., Zafar R., Subalakshmi K., Kim H., Bathula C., Seo Y., J. Hazard. Mater., 2021, 407, 124360; [51] Su T., Lu G., Sun K., Zhang M., Cai C., Catal. Sci. Technol., 2022, 12, 216; [52] Han Y., Li J., Zhang T., Qi P., Li S., Gao X., Zhou J., Feng X., Wang B., Chem. Eur. J., 2018, 24, 1651; [53] Guo J., Wan Y., Zhu Y., Zhao M., Tang Z., Nano. Res., 2021, 14, 2037; [54] Hao Y., Chen L., Li J., Guo Y., Su X., Shu M., Zhang Q., Gao W., Li S., Yu Z., Gu L., Feng X., Yin A., Si R., Zhang Y., Wang B., Yan C., Nat. Commun., 2021, 12, 2682; [55] Jain P., Huang X., El-Sayed I., El-Sayed M., Acc. Chem. Res., 2008, 41, 1578; [56] Yang Q., Xu Q., Yu S., Jiang H., Angew. Chem. Int. Ed., 2016, 55, 3785; [57] Linic S., Aslam U., Boerigter C., Morabito M., Nat. Mater., 2015, 14, 567; [58] Wang Y., Liu L., Ma T., Zhang Y., Huang H., Adv. Funct. Mater., 2021, 31, 2102540; [59] Ismael M., J. Alloy. Compd., 2020, 846, 156446; [60] Huang T., Fu Y., Peng Q., Yu C., Zhu J., Yu A., Wang X., Appl. Surf. Sci., 2019, 480, 888; [61] Liu J., Wang H., Antonietti M., Chem. Soc. Rev., 2016, 45, 2308; [62] Liu X., Yang W., Chen L., Liu Z., Long L., Wang S., Liu C., Dong S., Jia J., ACS Appl. Mater. Inter., 2020, 12, 4463; [63] Bi L., Xu D., Zhang L., Lin Y., Wang D., Xie T., Phys. Chem. Chem. Phys., 2015, 17, 29899; [64] Wang Y., Wang X., Antonietti M., Angew. Chem. Int. Ed., 2012, 51, 68; [65] Yang L., Liu J., Yang L., Zhang M., Zhu H., Wang F., Yin J., Renew. Energ., 2020, 145, 691; [66] Liu D., Chen D., Li N., Xu Q., Li H., He J., Lu J., Small, 2019, 15, 1902291; [67] Gu W., Hu L., Li J., Wang E., ACS. Appl. Mater. Inter., 2016, 8, 35281; [68] Wang R., Yan T., Han L., Chen G., Li H., Zhang J., Shi L., Zhang D., J. Mater. Chem. A, 2013, 6, 5752; [69] Zhu Z., Chen C., Wu R., J. Chin. Chem. Soc., 2020, 67, 1654; [70] Luo D., Liu S., Liu J., Zhao J., Miao C., Ren J., Ind. Eng. Chem. Res., 2018, 57, 11920; [71] Muniandy L., Adam F., Mohamed A., Iqbal A., Rahman N., Appl. Surf. Sci., 2017, 398, 43; [72] Cao S., Low J., Yu J., Jaroniec M., Adv. Mater., 2015, 27, 2150; [73] Zhou Q., Zhang Z., Cai J., Liu B., Zhang Y., Gong X., Sui X., Yu A., Zhao L., Wang Z., Chen Z., Nano Energy, 2020, 71, 104592; [74] Banerjee R., Phan A., Wang B., Knobler C., Furukawa H., O'Keeffe M., Yaghi O., Science, 2008, 319, 939; [75] Wang P., Zhang X., Shi R., Zhao J., Yuan Z., Zhang T., Energy Fuels, 2022, 36, 11627; [76] Chen H., Shi R., Zhang T., Molecules, 2021, 26, 7552; [77] Li Y., Li R., Li. Z, Xu Y., Yuan H., Ouyang S., Zhang T., Solar RRL, 2022, 6, 2200493; [78] Wang Y., Wu X., Shao B., Yang X., Owens G., Xu H., Sci. Bull., 2020, 65, 1380; [79] Bastienne B., Patricia A., Feiters M., Nolte R., J. Chem. Soc., Dalton Trans., 1998,2241; [80] Gansäuer A., Lauterbach T., Narayan S., Angew. Chem. Int. Ed., 2003, 42, 5556 |
[1] | LIN Tian, WANG Haowu, CUI Chengqian, LIU Wei, LI Guodong. Recent Advances on Confining Noble Metal Nanoparticles Inside Metal-Organic Frameworks for Hydrogenation Reactions [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1309-1323. |
[2] | WANG Yuda, ZULPYA Mahmut, ZHANG Xinyao, XU Shihan, SUN Jiao, DONG Biao. Recent Advances of Metal-Organic Frameworks-based Nanozymes for Bio-applications [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1324-1343. |
[3] | WANG Yitong, MENG Fanchen, SU Ruifa, SUN Changrui, HAN Qianqian, ZHANG Weina, ZHANG Suoying. Synergistic Catalysis of Enzymes and Biomimetic MOFs:Immobilizing Cyt c on Two-dimensional MOFs to Enhance the Performance of Peroxidase [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1356-1360. |
[4] | CHEN Liquan, LI Dawei, REN Jinghan, LI Yameng, GAO Dong, XING Chengfen. Side Chain Functional Conjugated Porous Polymers for NIR Controlled Carbon Dioxide Adsorption and Release [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1467-1474. |
[5] | PANG Kuan, XUE Huan, LIU Haixiong, SUN Jing, LIU Tianfu. Chelating Metal Ions in a Metal-Organic Framework for Constructing a Biomimetic Catalyst Through Post-modification [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1542-1546. |
[6] | WANG Wenyang, LIU Hanlin, YANG Caoyu, FAN Ting, CUI Chengqian, LU Xiaoquan, TANG Zhiyong, LI Guodong. Coordinating Zirconium Nodes in Metal-Organic Framework with Trifluoroacetic Acid for Enhanced Lewis Acid Catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1301-1307. |
[7] | LI Jingkang, JIANG Yanxiao, YANG Jukun, SUN Ying, MA Pinyi, and SONG Daqian. Fabrication of the Metal-Organic Framework Membrane with Excellent Adsorption Properties for Paraben Based on Micro Fibrillated Cellulose [J]. Chemical Research in Chinese Universities, 2022, 38(3): 790-797. |
[8] | ZHANG Ziqi, WANG Hanbo, LI Yuxin, XIE Minggang, LI Chunguang, LU Haiyan, PENG Yu, and SHI Zhan. Confined Pyrolysis Synthesis of Well-dispersed Cobalt Copper Bimetallic Three-dimensional N-Doped Carbon Framework as Efficient Water Splitting Electrocatalyst [J]. Chemical Research in Chinese Universities, 2022, 38(3): 750-757. |
[9] | QIAO Junyi, LIU Xinyao, ZHANG Lirong, LIU Yunling. Self-assembly of 3p-Block Metal-based Metal-Organic Frameworks from Structural Perspective [J]. Chemical Research in Chinese Universities, 2022, 38(1): 31-44. |
[10] | LI Hengbo, WANG Kuikui, WU Mingyan, HONG Maochun. A Cage-based Porous Metal-Organic Framework for Efficient C2H2 Storage and Separation [J]. Chemical Research in Chinese Universities, 2022, 38(1): 82-86. |
[11] | YOU Dongyu, ZHAO Yujuan, YANG Weiting, PAN Qinhe, LI Jiyang. Metal-Organic Framework-based Wood Aerogel for Effective Removal of Micro/Nano Plastics [J]. Chemical Research in Chinese Universities, 2022, 38(1): 186-191. |
[12] | YU Xinyue, ZHONG Yao, SUN Yu, CHEN Yanwei. Controllable Preparation of Plasmonic Gold Nanostars for Enhanced Photothermal and SERS Effects [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1284-1291. |
[13] | LEI Huijin, ZHANG Xinlu, JIN Jiongke, WANG Shuhua, DING Shunmin, ZHANG Ning, CHEN Chao. Highly Uniform Alkali Doped Cobalt Oxide Derived from Anionic Metal-Organic Framework: Improving Activity and Water Tolerance for CO Oxidation [J]. Chemical Research in Chinese Universities, 2020, 36(5): 946-954. |
[14] | WEN Jinguli, LI Yuwen, GAO Junkuo. Two-dimensional Metal-Organic Frameworks and Derivatives for Electrocatalysis [J]. Chemical Research in Chinese Universities, 2020, 36(4): 662-679. |
[15] | LEI Jia, ZENG Mengqi, FU Lei. Two-dimensional Metal-Organic Frameworks as Electrocatalysts for Oxygen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2020, 36(4): 504-510. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||