Recent Advances of Metal-Organic Frameworks-based Nanozymes for Bio-applications
WANG Yuda, ZULPYA Mahmut, ZHANG Xinyao, XU Shihan, SUN Jiao, DONG Biao
2022, 38(6):
1324-1343.
doi:10.1007/s40242-022-2256-x
Abstract
(
)
References |
Related Articles |
Metrics
Artificial nanoenzymes with enzyme-like catalytic activity have gradually become an alternative to natural enzymes due to their low production cost, high stability, and good tolerance. In recent years, various enzyme mimics have emerged with the rapid development of nano-teclnology. Metal-organic frameworks(MOFs) are a novel class of porous inorganic-organic hybrid materials made from metal ions/clusters and organic ligands, and MOFs-based nanozymes show great prospect in biosensing, biocatalysis, biomedical imaging, and therapeutic applications, due to unique properties, such as high specific surface area, high porosity, tunable morphology, and excellent biocatalytic properties. In this paper, the recent progresses concerning MOFs-based nanozymes are systematically summarized, including the synthesis, design strategies and related applications, which are divided into two major categories, namely, MOFs structured nanoenzymes and MOFs composite structured nanoenzymes. Meanwhile, the applications of various classifications of MOFs research are introduced. At the end, current challenges and future perspectives of MOFs-based nanozymes are also discussed. It is highly expected that this review on this important area can provide a meaningful guidance for tumor therapy, biosensing and other aspects.