Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2): 203-210.doi: 10.1007/s40242-020-9036-2
• Reviews • Previous Articles Next Articles
YANG Linlin1,2, MIAO Yanyan1, HAN Da1
Received:
2019-10-31
Revised:
2019-12-18
Online:
2020-04-01
Published:
2020-03-18
Contact:
HAN Da
E-mail:dahan@sjtu.edu.cn
Supported by:
YANG Linlin, MIAO Yanyan, HAN Da. DNA Nanotechnology on Live Cell Membranes[J]. Chemical Research in Chinese Universities, 2020, 36(2): 203-210.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Munro S., Cell, 2003, 115(4), 377 |
[2] | Singer S. J., Nicolson G. L., Science, 1972, 175(4023), 720 |
[3] | Ren K., Liu Y., Wu J., Zhang Y., Zhu J., Yang M., Ju H., Nat. Commun., 2016, 7, 13580 |
[4] | Liu Y. C., Yen H. Y., Chen C. Y., Chen C. H., Cheng P. F., Juan Y. H., Chen C. H., Khoo K. H., Yu C. J., Yang P. C., Hsu T. L., Wong C. H., Proc. Natl. Acad. Sci. USA, 2011, 108(28), 11332 |
[5] | Yuzwa S. A., Shan X., Macauley M. S., Clark T., Skorobogatko Y., Vosseller K., Vocadlo D. J., Nat. Chem. Biol., 2012, 8(4), 393 |
[6] | Chen J., Seeman N. C., Nature, 1991, 350(6319), 631 |
[7] | Seeman N. C., Nature, 2003, 421(6921), 427 |
[8] | Rothemund P. W. K., Nature, 2006, 440(7082), 297 |
[9] | Ding B., Seeman N. C., Science, 2006, 314(5805), 1583 |
[10] | Douglas S. M., Dietz H., Liedl T., Högberg B., Graf F., Shih W. M., Nature, 2009, 459(7245), 414 |
[11] | Ke Y., Ong L. L., Shih W. M., Yin P., Science, 2012, 338(6111), 1177 |
[12] | Acuna G. P., Möller F. M., Holzmeister P., Beater S., Lalkens B., Tinnefeld P., Science, 2012, 338(6106), 506 |
[13] | Gerling T., Wagenbauer K. F., Neuner A. M., Dietz H., Science, 2015, 347(6229), 1446 |
[14] | Angelin A., Weigel S., Garrecht R., Meyer R., Bauer J., Kumar R. K., Hirtz M., Niemeyer C. M., Angew. Chem., Int. Ed., 2015, 54(52), 15813 |
[15] | Seeman N. C., J. Theor. Biol., 1982, 99(2), 237 |
[16] | Kallenbach N. R., Ma R. I., Seeman N. C., Nature, 1983, 305(5937), 829 |
[17] | Tay C. Y., Yuan L., Leong D. T., ACS Nano, 2015, 9(5), 5609 |
[18] | Setyawati M. I., Kutty R. V., Tay C. Y., Yuan X., Xie J., Leong D. T., ACS Appl. Mater. Interfaces, 2014, 6(24), 21822 |
[19] | Meyer R., Niemeyer C. M., Small, 2011, 7(22), 3211 |
[20] | Douglas S. M., Chou J. J., Shih W. M., Proc. Natl. Acad. Sci. USA, 2007, 104(16), 6644 |
[21] | Zhao W., Loh W., Droujinine I. A., Teo W., Kumar N., Schafer S., Cui C. H., Zhang L., Sarkar D., Karnik R., Karp J. M., The FASEB Journal, 2011, 25(9), 3045 |
[22] | Ren K., Liu Y., Wu J., Zhang Y., Zhu J., Yang M., Ju H., Nat. Commun., 2016, 7(1), 13580 |
[23] | Akbari E., Mollica M. Y., Lucas C. R., Bushman S. M., Patton R. A., Shahhosseini M., Song J. W., Castro C. E., Adv. Mater., 2017, 29(46), 1703632 |
[24] | Zhao W., Schafer S., Choi J., Yamanaka Y. J., Lombardi M. L., Bose S., Carlson A. L., Phillips J. A., Teo W., Droujinine I. A., Cui C. H., Jain R. K., Lammerding J., Love J. C., Lin C. P., Sarkar D., Karnik R., Karp J. M., Nat. Nanotechnol., 2011, 6(8), 524 |
[25] | Ying L., Xie N., Yang Y., Yang X., Zhou Q., Yin B., Huang J., Wang K., Chem. Commun., 2016, 52(50), 7818 |
[26] | Feng G., Luo X., Lu X., Xie S., Deng L., Kang W., He F., Zhang J., Lei C., Lin B., Huang Y., Nie Z., Yao S., Angew. Chem., Int. Ed., 2019, 58(20), 6590 |
[27] | Zeng S., Liu D., Li C., Yu F., Fan L., Lei C., Huang Y., Nie Z., Yao S., Anal. Chem., 2018, 90(22), 13459 |
[28] | Liu L., Dou C. X., Liu J. W., Wang X. N., Ying Z. M., Jiang J. H., Anal. Chem., 2018, 90(19), 11198 |
[29] | Qiu L., Zhang T., Jiang J., Wu C., Zhu G., You M., Chen X., Zhang L., Cui C., Yu R., Tan W., J. Am. Chem. Soc., 2014, 136(38), 13090 |
[30] | Han D., Zhu G., Wu C., Zhu Z., Chen T., Zhang X., Tan W., ACS Nano, 2013, 7(3), 2312 |
[31] | Chang X., Zhang C., Lv C., Sun Y., Zhang M., Zhao Y., Yang L., Han D., Tan W., J. Am. Chem. Soc., 2019, 141(32), 12738 |
[32] | Peng R., Zheng X., Lyu Y., Xu L., Zhang X., Ke G., Liu Q., You C., Huan S., Tan W., J. Am. Chem. Soc., 2018, 140(31), 9793 |
[33] | You M., Peng L., Shao N., Zhang L., Qiu L., Cui C., Tan W., J. Am. Chem. Soc., 2014, 136(4), 1256 |
[34] | You M., Lyu Y., Han D., Qiu L., Liu Q., Chen T., Wu C. S., Peng L., Zhang L., Bao G., Tan W., Nat. Nanotechnol., 2017, 12(5), 453 |
[35] | Xiong X., Liu H., Zhao Z., Altman M. B., Lopez-Colon D., Yang C. J., Chang L. J., Liu C., Tan W., Angew. Chem. Int. Ed., 2013, 52(5), 1472 |
[36] | Ke G., Zhu Z., Wang W., Zou Y., Guan Z., Jia S., Zhang H., Wu X., Yang C. J., ACS Appl. Mater. Interfaces, 2014, 6(17), 15329 |
[37] | Todhunter M. E., Jee N. Y., Hughes A. J., Coyle M. C., Cerchiari A., Farlow J., Garbe J. C., LaBarge M. A., Desai T. A., Gartner Z. J., Nat. Methods, 2015, 12(10), 975 |
[38] | Selden N. S., Todhunter M. E., Jee N. Y., Liu J. S., Broaders K. E., Gartner Z. J., J. Am. Chem. Soc., 2012, 134(2), 765 |
[39] | Peng R., Wang H., Lyu Y., Xu L., Liu H., Kuai H., Liu Q., Tan W., J. Am. Chem. Soc., 2017, 139(36), 12410 |
[40] | Liang H., Chen S., Li P., Wang L., Li J., Li J., Yang H. H., Tan W., J. Am. Chem. Soc., 2018, 140(12), 4186 |
[41] | Ang Y. S., Li J. E. J., Chua P. J., Ng C. T., Bay B. H., Yung L. Y. L., Anal. Chem., 2018, 90(10), 6193 |
[42] | Tang Y., Lin Y., Yang X., Wang Z., Le X. C., Li F., Anal. Chem., 2015, 87(16), 8063 |
[43] | Kurz A., Bunge A., Windeck A. K., Rost M., Flasche W., Arbuzova A., Strohbach D., Müller S., Liebscher J., Huster D., Herrmann A., Angew. Chem., Int. Ed., 2006, 45(27), 4440 |
[44] | Breaker R. R., Joyce G. F., Chem. Boil., 1994, 1(4), 223 |
[45] | Liu J., Lu Y., J. Am. Chem. Soc., 2007, 129(32), 9838 |
[46] | Pavlov V., Xiao Y., Gill R., Dishon A., Kotler M., Willner I., Anal. Chem., 2004, 76(7), 2152 |
[47] | Travascio P., Witting P. K., Mauk A. G., Sen D., J. Am. Chem. Soc., 2001, 123(7), 1337 |
[48] | Li J., Lu Y., J. Am. Chem. Soc., 2000, 122(42), 10466 |
[49] | Li J., Zheng W., Kwon A. H., Lu Y., Nucleic Acids Res., 2000, 28(2), 481 |
[50] | Hollenstein M., Hipolito C., Lam C., Dietrich D., Perrin D. M., Angew. Chem., Int. Ed., 2008, 47(23), 4346 |
[51] | Liu J., Lu Y., Angew. Chem., Int. Ed., 2007, 46(40), 7587 |
[52] | Zhang J., Lan T., Lu Y., Adv. Healthc. Mat., 2019, 8(6), 1801158 |
[53] | Zhang J., Catalysts, 2018, 8(11), 550 |
[54] | Choi J., Kim S., Tachikawa T., Fujitsuka M., Majima T., J. Am. Chem. Soc., 2011, 133(40), 16146 |
[55] | Day H. A., Pavlou P., Waller Z. A. E., Bioorgan. Med. Chem., 2014, 22(16), 4407 |
[56] | Zhang G., Surwade S. P., Zhou F., Liu H., Chem. Soc. Rev., 2013, 42(7), 2488 |
[57] | Chao J., Liu H., Su S., Wang L., Huang W., Fan C., Small, 2014, 10(22), 4626 |
[58] | Zadegan R. M., Norton M. L., Int. J. Mol. Sci., 2012, 13(6), 7149 |
[59] | Ke Y., Castro C., Choi J. H., Annu. Rev. Biomed. Eng., 2018, 20, 375 |
[60] | Burns J. R., Seifert A., Fertig N., Howorka S., Nat. Nanotechnol., 2016, 11(2), 152 |
[61] | Gopfrich K., Li C. Y., Mames I., Bhamidimarri S. P., Ricci M., Yoo J., Mames A., Ohmann A., Winterhalter M., Stulz E., Aksimentiev A., Keyser U. F., Nano Lett., 2017, 17(7), 4548 |
[62] | Seifert A., Goepfrich K., Burns J. R., Fertig N., Keyser U. F., Howorka S., ACS Nano, 2015, 9(2), 1117 |
[63] | Burns J. R., Goepfrich K., Wood J. W., Thacker V. V., Stulz E., Keyser U. F., Howorka S., Angew. Chem., Int. Ed., 2013, 52(46), 12069 |
[64] | Ohmann A., Li C. Y., Maffeo C., Al Nahas K., Baumann K. N., Göpfrich K., Yoo J., Keyser U. F., Aksimentiev A., Nat. Commun., 2018, 9(1), 2426 |
[65] | Akbari E., Mollica M. Y., Lucas C. R., Bushman S. M., Patton R. A., Shahhosseini M., Song J. W., Castro C. E., Adv. Mater., 2017, 29(46), 1703632 |
[66] | Wang K. S., Kim H. T., Nikiforow S., Heubeck A. T., Ho V. T., Koreth J., Alyea E. P., Armand P., Blazar B. R., Soiffer R. J., Antin J. H., Cutler C. S., Ritz J., Blood, 2017, 130(26), 2889 |
[67] | Sengers B. G., McGinty S., Nouri F. Z., Argungu M., Hawkins E., Hadji A., Weber A., Taylor A., Sepp A., MAbs, 2016, 8(5), 905 |
[68] | Kokla A., Blouchos P., Livaniou E., Zikos C., Kakabakos S. E., Petrou P. S., Kintzios S., J. Mol. Recognit., 2013, 26(12), 627 |
[69] | Bino T., Frey J. L., Ortaldo J. R., Cell. Immunol., 1992, 142(1), 28 |
[70] | Zhang K., Hao L., Hurst S. J., Mirkin C. A., J. Am. Chem. Soc., 2012, 134(40), 16488 |
[71] | Rudchenko M., Taylor S., Pallavi P., Dechkovskaia A., Khan S., Butler V. P., Jr., Rudchenko S., Stojanovic M. N., Nat. Nanotechnol., 2013, 8(8), 580 |
[72] | Keefe A. D., Pai S., Ellington A., Nature Reviews Drug Discovery, 2010, 9(8), 537 |
[73] | Rusconi C. P., Roberts J. D., Pitoc G. A., Nimjee S. M., White R. R., Quick G., Scardino E., Fay W. P., Sullenger B. A., Nat. Biotechnol., 2004, 22(11), 1423 |
[74] | Famulok M., Hartig J. S., Mayer G., Chem. Rev., 2007, 107(9), 3715 |
[75] | Zhu H., Li J., Zhang X. B., Ye M., Tan W., ChemMedChem, 2015, 10(1), 39 |
[76] | Tuerk C., Gold L., Science, 1990, 249(4968), 505 |
[77] | Ellington A. D., Szostak J. W., Nature, 1990, 346(6287), 818 |
[78] | Liu Q., Jin C., Wang Y., Fang X., Zhang X., Chen Z., Tan W., NPG Asia Materials, 2014, 6(4), e95 |
[79] | Yang L., Zhang X., Ye M., Jiang J., Yang R., Fu T., Chen Y., Wang K., Liu C., Tan W., Adv. Drug Deliver. Rev., 2011, 63(14), 1361 |
[80] | Brody E. N., Gold L., Rev. Mol. Biotechnol., 2000, 74(1), 5 |
[81] | Wang Y. M., Wu Z., Liu S. J., Chu X., Anal. Chem., 2015, 87(13), 6470 |
[82] | Wu X. R., Wu C. W., Zhang C., Chinese J. Polym. Sci., 2017, 35(1), 1 |
[83] | Lee D. S., Qian H., Tay C. Y., Leong D. T., Chem. Soc. Rev., 2016, 45(15), 4199 |
[84] | Angell C., Xie S., Zhang L., Chen Y., Small, 2016, 12(9), 1117 |
[85] | Jones M. R., Seeman N. C., Mirkin C. A., Science, 2015, 347(6224), 1260901 |
[86] | Chao J., Zhu D., Zhang Y., Wang L., Fan C., Biosens. Bioelectron., 2016, 76, 68 |
[87] | Ni X., Castanares M., Mukherjee A., Lupold S. E., Curr. Med. Chem., 2011, 18(27), 4206 |
[88] | Lee J. F., Stovall G. M., Ellington A. D., Curr. Opin. Chem. Biol., 2006, 10(3), 282 |
[89] | Tasset D. M., Kubik M. F., Steiner W., J. Mol. Biol., 1997, 272(5), 688 |
[90] | Bock L. C., Griffin L. C., Latham J. A., Vermaas E. H., Toole J. J., Nature, 1992, 355(6360), 564 |
[91] | Trusolino L., Bertotti A., Comoglio P. M., Nat. Rev. Mol. Cell Bio., 2010, 11(12), 834 |
[92] | Organ S. L., Tsao M. S., Ther. Adv. Med. Oncol., 2011, 3(1), 7 |
[93] | Wang L., Liang H., Sun J., Liu Y., Li J., Li J., Li J., Yang H., J. Am. Chem. Soc., 2019, 141(32), 12673 |
[94] | Shaw A., Lundin V., Petrova E., Fordos F., Benson E., Al-Amin A., Herland A., Blokzijl A., Hogberg B., Teixeira A. I., Nat. Methods, 2014, 11(8), 841 |
[95] | Zhang K., Deng R., Sun Y., Zhang L., Li J., Chem. Sci., 2017, 8(10), 7098 |
[96] | Dougherty T. J., Gomer C. J., Henderson B. W., Jori G., Kessel D., Korbelik M., Moan J., Peng Q., JNCI: J. Natl. Cancer I., 1998, 90(12), 889 |
[97] | Idris N. M., Gnanasammandhan M. K., Zhang J., Ho P. C., Mahendran R., Zhang Y., Nat. Med., 2012, 18(10), 1580 |
[98] | Bugaj A. M., Photoch. Photobio. Sci., 2011, 10(7), 1097 |
[99] | Wang J., Zhu G., You M., Song E., Shukoor M. I., Zhang K., Altman M. B., Chen Y., Zhu Z., Huang C. Z., Tan W., ACS Nano, 2012, 6(6), 5070 |
[100] | Lacroix A., Edwardson T. G. W., Hancock M. A., Dore M. D., Sleiman H. F., J. Am. Chem. Soc., 2017, 139(21), 7355 |
[101] | Osborn M. F., Coles A. H., Biscans A., Haraszti R. A., Roux L., Davis S., Ly S., Echeverria D., Hassler M. R., Godinho B. M. D. C., Nikan M., Khvorova A., Nucleic Acids Res., 2018, 47(3), 1070 |
[102] | Palte M. J., Raines R. T., J. Am. Chem. Soc., 2012, 134(14), 6218 |
[103] | Xiong X., Liu H., Zhao Z., Altman M. B., Lopez-Colon D., Yang C. J., Chang L. J., Liu C., Tan W., Angew. Chem., Int. Ed., 2013, 52(5), 1472 |
[1] | ZHANG Qian, LIANG Yuyan, XING Hang. Caging-Decaging Strategies to Realize Spatiotemporal Control of DNAzyme Activity for Biosensing and Bioimaging [J]. Chemical Research in Chinese Universities, 2022, 38(4): 902-911. |
[2] | HUANG Qin, LIU Xin, ZHANG Pengge, WU Zhan, ZHAO Zilong. A DNA Nano-train Carrying a Predefined Drug Combination for Cancer Therapy [J]. Chemical Research in Chinese Universities, 2022, 38(4): 928-934. |
[3] | WANG Yue, WANG Jinling, MA Jianxin, ZHANG Yue, XU Na, WANG Xiuli. Multi-functional Photoelectric Sensor Based on a Three-fold Interpenetrated Cd(II) Coordination Polymer for Sensitively Detecting Different Ions [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1105-1110. |
[4] | WANG Youjuan, YE Zhifei, SONG Guosheng, LIU Zhuang. Magnetic-Optical Imaging for Monitoring Chemodynamic Therapy [J]. Chemical Research in Chinese Universities, 2022, 38(2): 481-492. |
[5] | XU Kai, HUANG Ning. Recent Advances of Covalent Organic Frameworks in Chemical Sensing [J]. Chemical Research in Chinese Universities, 2022, 38(2): 339-349. |
[6] | WU Liting, XIN Yujia, GUO Zhaoyang, GAO Wei, ZHU Yanpeng, br, WANG Yinsong, RAN Ruixue, YANG Xiaoying. Cell Membrane-camouflaged Multi-functional Dendritic Large Pore Mesoporous Silica Nanoparticles for Combined Photothermal Therapy and Radiotherapy of Cancer [J]. Chemical Research in Chinese Universities, 2022, 38(2): 562-571. |
[7] | WANG Bingya, GUO Xiaomei, LIU Zuodong, WU Yongquan, HOU Ji-Ting. A Long-wavelength Emissive Phenothiazine Derived Fluorescent Probe for Detecting HOCl Upregulation in 5-FU Stimulated Living Cells [J]. Chemical Research in Chinese Universities, 2022, 38(2): 609-615. |
[8] | XU Haijiao, WANG Hongda. Conventional Molecular and Novel Structural Mechanistic Insights into Orderly Organelle Interactions [J]. Chemical Research in Chinese Universities, 2021, 37(4): 829-839. |
[9] | YUAN Hui, LIANG Hanyu, HOU Peidong, LI Juan. Advanced Nanomaterials for Multimodal Molecular Imaging [J]. Chemical Research in Chinese Universities, 2021, 37(4): 840-845. |
[10] | LI Haonan, WANG Zhao, HUO Fengwei, WANG Shutao. Dip-Pen Nanolithography(DPN): from Micro/Nano-patterns to Biosensing [J]. Chemical Research in Chinese Universities, 2021, 37(4): 846-854. |
[11] | LIU Zhiyu, LIANG Gaolin, ZHAN Wenjun. In situ Activatable Peptide-based Nanoprobes for Tumor Imaging [J]. Chemical Research in Chinese Universities, 2021, 37(4): 889-899. |
[12] | YIN Fangfei, CAO Nan, XIANG Xuelin, FENG Hao, LI Fan, LI Min, XIA Qiang, ZUO Xiaolei. DNA Framework-based Topological Aptamer for Differentiating Subtypes of Hepatocellular Carcinoma Cells [J]. Chemical Research in Chinese Universities, 2021, 37(4): 919-924. |
[13] | CHU Binbin, WANG Houyu, HE Yao. Fluorescent Silicon-based Nanomaterials Imaging Technology in Diseases [J]. Chemical Research in Chinese Universities, 2021, 37(4): 880-888. |
[14] | LU Feng, ZHAO Ting, SUN Xiaojun, WANG Zuqiang, FAN Quli, HUANG Wei. Rare-earth Doped Nanoparticles with Narrow NIR-II Emission for Optical Imaging with Reduced Autofluorescence [J]. Chemical Research in Chinese Universities, 2021, 37(4): 943-950. |
[15] | YUAN Fang, LI Yang, CHEN Zhenjuan, ZHANG Jianjian, NING Lulu, YANG Xiao-Feng, PU Kanyi. Excimer-based Activatable Fluorescent Sensor for Sensitive Detection of Alkaline Phosphatase [J]. Chemical Research in Chinese Universities, 2021, 37(4): 960-966. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||