Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2): 339-349.doi: 10.1007/s40242-022-1476-4
• Reviews • Previous Articles Next Articles
XU Kai, HUANG Ning
Received:
2021-11-30
Revised:
2022-01-06
Online:
2022-04-01
Published:
2022-05-18
Contact:
HUANG Ning
E-mail:nhuang@zju.edu.cn
Supported by:
XU Kai, HUANG Ning. Recent Advances of Covalent Organic Frameworks in Chemical Sensing[J]. Chemical Research in Chinese Universities, 2022, 38(2): 339-349.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Geng K., He T., Liu R., Dalapati S., Tan K. T., Li Z., Tao S., Gong Y., Jiang Q., Jiang D., Chem. Rev., 2020, 120, 8814. [2] Díaz U., Corma A., Coordin. Chem. Rev., 2016, 311, 85. [3] Côté A. P., Benin A. I., Ockwig N. W., O'Keeffe M., Matzger A. J., Yaghi O. M., Science, 2005, 310, 1166. [4] Tan K. T., Tao S., Huang N., Jiang D., Nat. Commun., 2021, 12, 6747. [5] Nguyen H. L., Gropp C., Ma Y., Zhu C., Yaghi O. M., J. Am. Chem. Soc., 2020, 142, 20335. [6] Huang N., Chen X., Krishna R., Jiang D., Angew. Chem. Int. Ed., 2015, 54, 2986. [7] Chang J., Li H., Zhao J., Guan X., Li C., Yu G., Valtchev V., Yan Y., Qiu S., Fang Q., Chem. Sci., 2021, 12, 8452. [8] Fan H., Mundstock A., Feldhoff A., Knebel A., Gu J., Meng H., Caro J.,J. Am. Chem. Soc., 2018, 140, 10094. [9] Zeng Y., Zou R., Zhao Y., Adv. Mater., 2016, 28, 2855. [10] Fang Q., Gu S., Zheng J., Zhuang Z., Qiu S., Yan Y., Angew. Chem. Int. Ed., 2014, 53, 2878. [11] Yue Y., Cai P., Xu K., Li H., Chen H., Zhou H.-C., Huang N.,J. Am. Chem. Soc., 2021, 143, 18052. [12] Chen F., Guan X., Li H., Ding J., Zhu L., Tang B., Valtchev V., Yan Y., Qiu S., Fang Q., Angew. Chem. Int. Ed., 2021,60, 22230. [13] Shi J. L., Chen R., Hao H., Wang C., Lang X., Angew. Chem. Int. Ed., 2020, 59, 9088. [14] Guo J., Jiang D., ACS Cent. Sci., 2020, 6, 869. [15] Jin H., Guo C., Liu X., Liu J., Vasileff A., Jiao Y., Zheng Y., Qiao S. Z., Chem. Rev., 2018, 118, 6337. [16] Ding S.-Y., Gao J., Wang Q., Zhang Y., Song W.-G., Su C.-Y., Wang W.,J. Am. Chem. Soc., 2011, 133, 19816. [17] Keller N., Bein T.,Chem. Soc. Rev., 2021, 50, 1813. [18] Xu X., Wang S., Yue Y., Huang N., ACS Appl. Mater. Interfaces, 2020, 12, 37427. [19] Wang S., Xu X., Yue Y., Yu K., Shui Q., Huang N., Chen H.,Small Struct., 2020, 1, 2000021. [20] Matsumoto M., Valentino L., Stiehl G. M., Balch H. B., Corcos A. R., Wang F., Ralph D. C., Mariñas B. J., Dichtel W. R., Chem, 2018, 4, 308. [21] Ding H., Li J., Xie G., Lin G., Chen R., Peng Z., Yang C., Wang B., Sun J., Wang C.,Nat. Commun., 2018, 9, 5234. [22] Huang N., Lee K. H., Yue Y., Xu X., Irle S., Jiang Q., Jiang D., Angew. Chem. Int. Ed., 2020, 59, 16587. [23] Chen W., Wang L., Mo D., He F., Wen Z., Wu X., Xu H., Chen L., Angew. Chem. Int. Ed., 2020, 59, 16902. [24] Yu M., Dong R., Feng X., J. Am. Chem. Soc., 2020, 142, 12903. [25] Xu F., Xu H., Chen X., Wu D., Wu Y., Liu H., Gu C., Fu R., Jiang D., Angew. Chem. Int. Ed., 2015, 54, 6814. [26] Wang S., Yang L., Xu K., Chen H., Huang N., ACS Appl. Mater. Interfaces, 2021, 13, 44806. [27] Li Y., Wu Q., Guo X., Zhang M., Chen B., Wei G., Li X., Li X., Li S., Ma L., Nat. Commun., 2020, 11, 599. [28] Kandambeth S., Biswal B. P., Chaudhari H. D., Rout K. C., Kunjattu H S., Mitra S., Karak S., Das A., Mukherjee R., Kharul U. K., Banerjee R., Adv. Mater., 2017, 29, 1603945. [29] Liu X., Huang D., Lai C., Zeng G., Qin L., Wang H., Yi H., Li B., Liu S., Zhang M., Deng R., Fu Y., Li L., Xue W., Chen S., Chem. Soc. Rev., 2019, 48, 5266. [30] Zeng J. Y., Wang X. S., Zhang X. Z., Chem. Eur. J., 2020, 26, 16568. [31] Diercks C. S., Yaghi O. M.,Science, 2017,355, eaal1585. [32] Cao D., Liu Z., Verwilst P., Koo S., Jangjili P., Kim J. S., Lin W., Chem. Rev.. 2019, 119, 10403. [33] Dutta A., Singh A., Wang X., Kumar A., Liu J., CrystEngComm, 2020, 22, 7736. [34] Yue Y., Cai P., Xu X., Li H., Chen H., Zhou H.-C., Huang N.,Angew. Chem. Int. Ed., 2021, 60, 10806. [35] Allendorf M. D., Dong R., Feng X., Kaskel S., Matoga D., Stavila V., Chem. Rev.. 2020, 120, 8581. [36] Cui J., Kan L., Li Z., Yang L., Wang M., He L., Lou Y., Xue Y., Zhang Z., Talanta, 2021, 228, 122060. [37] Zhang W., Ye W., Wang C., Li W., Yue Z., Liu G., Micro Nano Lett., 2014, 9, 585. [38] Miki H., Matsubara F., Nakashima S., Ochi S., Nakagawa K., Matsuguchi M., Sadaoka Y., Sens. Actuators B Chem., 2016, 231, 458. [39] De Acha N., Elosua C., Matias I., Arregui F. J.,Sensors, 2017, 17, 2826. [40] Kulkarni R., Noda Y., Kumar Barange D., Kochergin Y. S., Lyu P., Balcarova B., Nachtigall P., Bojdys M. J., Nat. Commun., 2019, 10, 3228. [41] Ding S. Y., Dong M., Wang Y. W., Chen Y. T., Wang H. Z., Su C. Y., Wang W., J. Am. Chem. Soc., 2016, 138, 3031. [42] Lin G., Ding H., Yuan D., Wang B., Wang C.,J. Am. Chem. Soc., 2016, 138, 3302. [43] Lyu H., Diercks C. S., Zhu C., Yaghi O. M.,J. Am. Chem. Soc., 2019, 141, 6848. [44] Fang Q., Zhuang Z., Gu S., Kaspar R. B., Zheng J., Wang J., Qiu S., Yan Y., Nat. Commun., 2014, 5, 4503. [45] Kuhn P., Antonietti M., Thomas A., Angew. Chem. Int. Ed., 2008, 47, 3450. [46] Skorjanc T., Shetty D., Valant M., ACS Sens., 2021, 6, 1461. [47] Dalapati S., Jin S., Gao J., Xu Y., Nagai A., Jiang D., J. Am. Chem. Soc., 2013, 135, 17310. [48] Das G., Biswal B. P., Kandambeth S., Venkatesh V., Kaur G., Addicoat M., Heine T., Verma S., Banerjee R., Chem. Sci., 2015,6, 3931. [49] Xie Y.-F., Ding S.-Y., Liu J.-M., Wang W., Zheng Q.-Y., J. Mater. Chem. C, 2015, 3, 10066. [50] Dalapati S., Jin E., Addicoat M., Heine T., Jiang D., J. Am. Chem. Soc., 2016, 138, 5797. [51] Cui F. Z., Xie J. J., Jiang S. Y., Gan S. X., Ma D. L., Liang R. R., Jiang G. F., Zhao X., Chem. Commun., 2019, 55, 4550. [52] He Z.-H., Gong S.-D., Cai S.-L., Yan Y.-L., Chen G., Li X.-L., Zheng S.-R., Fan J., Zhang W.-G.,Cryst. Growth Des., 2019, 19, 3543. [53] Wu X., Han X., Xu Q., Liu Y., Yuan C., Yang S., Liu Y., Jiang J., Cui Y., J. Am. Chem. Soc., 2019, 141, 7081. [54] Meng Z., Stolz R. M., Mirica K. A., J. Am. Chem. Soc., 2019, 141, 11929. [55] Huang W., Jiang Y., Li X., Li X., Wang J., Wu Q., Liu X., ACS Appl. Mater. Interfaces, 2013, 5, 8845. [56] Singh H., Tomer V. K., Jena N., Bala I., Sharma N., Nepak D., De Sarkar A., Kailasam K., Pal S. K., J. Mater. Chem. A, 2017, 5, 21820. [57] Qian H. L., Dai C., Yang C. X., Yan X. P., ACS Appl. Mater. Interfaces, 2017, 9, 24999. [58] Li Z., Zhang Y., Xia H., Mu Y., Liu X., Chem. Commun., 2016,52, 6613. [59] Li Y., Chen M., Han Y., Feng Y., Zhang Z., Zhang B., Chem. Mater., 2020, 32, 2532. [60] Cui W.-R., Jiang W., Zhang C.-R., Liang R.-P., Liu J., Qiu J.-D., ACS Sustainable Chem. Eng., 2019, 8, 445. [61] Zhou Z., Zhong W., Cui K., Zhuang Z., Li L., Li L., Bi J., Yu Y.,Chem. Commun., 2018, 54, 9977. [62] Chen G., Lan H. H., Cai S. L., Sun B., Li X. L., He Z. H., Zheng S. R., Fan J., Liu Y., Zhang W. G., ACS Appl. Mater. Interfaces, 2019, 11, 12830. [63] Li M., Cui Z., Pang S., Meng L., Ma D., Li Y., Shi Z., Feng S., J. Mater. Chem. C, 2019, 7, 11919. [64] Zhang Y., Shen X., Feng X., Xia H., Mu Y., Liu X.,Chem. Commun., 2016, 52, 11088. [65] Chen L., He L., Ma F., Liu W., Wang Y., Silver M. A., Chen L., Zhu L., Gui D., Diwu J., Chai Z., Wang S., ACS Appl. Mater. Interfaces, 2018, 10, 15364. [66] Yuan F., Kong Y., You J., Zhang C., Xian Y., ACS Appl. Mater. Interfaces, 2021, 13, 51351. [67] Peng Y., Huang Y., Zhu Y., Chen B., Wang L., Lai Z., Zhang Z., Zhao M., Tan C., Yang N., Shao F., Han Y., Zhang H.,J. Am. Chem. Soc., 2017, 139, 8698. [68] Li W., Yang C. X., Yan X. P., Chem. Commun., 2017,53, 11469. [69] Wang P., Zhou F., Zhang C., Yin S. Y., Teng L., Chen L., Hu X. X., Liu H. W., Yin X., Zhang X. B., Chem. Sci., 2018, 9, 8402. [70] Yan X., Song Y., Liu J., Zhou N., Zhang C., He L., Zhang Z., Liu Z., Biosensors and Bioelectronics, 2019, 126, 734. [71] Wang M., Zhu L., Zhang S., Lou Y., Zhao S., Tan Q., He L., Du M., Sens. Actuators B Chem., 2021, 338, 129826. |
[1] | ZHANG Qian, LIANG Yuyan, XING Hang. Caging-Decaging Strategies to Realize Spatiotemporal Control of DNAzyme Activity for Biosensing and Bioimaging [J]. Chemical Research in Chinese Universities, 2022, 38(4): 902-911. |
[2] | WANG Yue, WANG Jinling, MA Jianxin, ZHANG Yue, XU Na, WANG Xiuli. Multi-functional Photoelectric Sensor Based on a Three-fold Interpenetrated Cd(II) Coordination Polymer for Sensitively Detecting Different Ions [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1105-1110. |
[3] | CHEN Zhangwu and LI Fen. Proton-induced Conversion from Non-Aufbau to Aufbau Electronic Structure of an Organic Radical with Turn-on Fluorescence [J]. Chemical Research in Chinese Universities, 2022, 38(3): 798-802. |
[4] | LI Jiali, ZHANG Zhenwei, JIA Ji, LIU Xiaoming. Covalent Organic Frameworks for Photocatalytic Organic Transformation [J]. Chemical Research in Chinese Universities, 2022, 38(2): 275-289. |
[5] | DI Zhengyi, MAO Yining, YUAN Heng, ZHOU Yan, JIN Jun, LI Cheng-Peng. Covalent Organic Frameworks(COFs) for Sequestration of99TcO4– [J]. Chemical Research in Chinese Universities, 2022, 38(2): 290-295. |
[6] | BI Shuai, MENG Fancheng, ZHANG Zixing, WU Dongqing, ZHANG Fan. Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked π-Conjugated Motifs [J]. Chemical Research in Chinese Universities, 2022, 38(2): 382-395. |
[7] | CHANG Shunkai, LI Cuiyan, LI Hui, ZHU Liangkui, FANG Qianrong. Stable Thiophene-sulfur Covalent Organic Frameworks for Oxygen Reduction Reaction(ORR) [J]. Chemical Research in Chinese Universities, 2022, 38(2): 396-401. |
[8] | ZHANG Yin, MA Shengqian. Laser-induced Synthesis of Ultrafine Gold Nanoparticles in Covalent Organic Frameworks [J]. Chemical Research in Chinese Universities, 2022, 38(2): 468-471. |
[9] | NIU Junfeng, SUN Haiya, XIA Housheng, ZHU Yinbang, CHEN Jialing, ZHU Chengye, BAI Wei. Visualization of Bulk Polymerization by Fluorescent Probe with Aggregation-induced Emission Characteristics [J]. Chemical Research in Chinese Universities, 2022, 38(2): 500-504. |
[10] | CUI Yumeng, MIAO Zhuang, LIU Qi, JIN Fenchun, ZHAI Yufeng, ZHANG Lingyan, WANG Wenli, WANG Ke, LIU Guiyan, ZENG Yongfei. Construction of a Three-dimensional Covalent Organic Framework via the Linker Exchange Strategy [J]. Chemical Research in Chinese Universities, 2022, 38(2): 402-408. |
[11] | WANG Guangbo, XIE Kehui, ZHU Fucheng, KAN Jinglan, LI Sha, GENG Yan, DONG Yubin. Construction of Tetrathiafulvalene-based Covalent Organic Frameworks for Superior Iodine Capture [J]. Chemical Research in Chinese Universities, 2022, 38(2): 409-414. |
[12] | YU Xiaoming, MA Yunchao, LI Cuiyan, GUAN Xinyu, FANG Qianrong, QIU Shilun. A Nitrogen, Sulfur co-Doped Porphyrin-based Covalent Organic Framework as an Efficient Catalyst for Oxygen Reduction [J]. Chemical Research in Chinese Universities, 2022, 38(1): 167-172. |
[13] | LI Mingfeng, FANG Hongbao, JI Yifan, CHEN Yuncong, HE Weijiang, GUO Zijian. Rational Design of Ratiometric Fe3+ Fluorescent Probes Based on FRET Mechanism [J]. Chemical Research in Chinese Universities, 2022, 38(1): 67-74. |
[14] | CHU Binbin, WANG Houyu, HE Yao. Fluorescent Silicon-based Nanomaterials Imaging Technology in Diseases [J]. Chemical Research in Chinese Universities, 2021, 37(4): 880-888. |
[15] | LU Feng, ZHAO Ting, SUN Xiaojun, WANG Zuqiang, FAN Quli, HUANG Wei. Rare-earth Doped Nanoparticles with Narrow NIR-II Emission for Optical Imaging with Reduced Autofluorescence [J]. Chemical Research in Chinese Universities, 2021, 37(4): 943-950. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||