Periodic density functional theory(DFT) calculations are presented to describe the adsorption and decomposition of CH3OH on Ru(0001) surfaces with different coverages, including p(3×2), p(2×2), and p(2×1) unit cells, corresponding to monolayer(ML) coverages of 1/6, 1/4, and 1/2, respectively. The geometries and energies of all species involved in methanol dissociation were analyzed, and the initial decomposition reactions of methanol and the subsequent dehydrogenations reactions of CH3O and CH2OH were all computed at 1/2, 1/4, and 1/6 ML coverage on the Ru(0001) surface. The results show that coverage exerts some effects on the stable adsorption of CH3O, CH2OH, and CH3, that is, the lower the coverage, the stronger the adsorption. Coverage also exerts effects on the initial decomposition of methanol. C-H bond breakage is favored at 1/2 ML, whereas C-H and O-H bond cleavages are preferred at 1/4 and 1/6 ML on the Ru(0001) surface, respectively. At 1/4 ML coverage on the Ru(0001) surface, the overall reaction mechanism can be written as 9CH3OH→3CH3O+6CH2OH+9H→6CH2O+3CHOH+18H→7CHO+COH+CH+OH+26H→8CO+C+O+36H.