Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3): 677-687.doi: 10.1007/s40242-022-2030-0
• Reviews • Previous Articles Next Articles
WEI Xiao, LI Xinhao, WANG Kaixue and CHEN Jiesheng
Received:
2022-01-24
Revised:
2022-03-07
Online:
2022-06-01
Published:
2022-05-26
Contact:
CHEN Jiesheng
E-mail:chemcj@sjtu.edu.cn
Supported by:
WEI Xiao, LI Xinhao, WANG Kaixue and CHEN Jiesheng. Design of Functional Carbon Composite Materials for Energy Conversion and Storage[J]. Chemical Research in Chinese Universities, 2022, 38(3): 677-687.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Li X. H., Kurasch S., Kaiser U., Antonietti M., Angew. Chem. Int. Ed., 2012, 51, 9689 [2] Ye T. N., Feng W. J.. Zhang B., Xu M., Lv L. B., Su J., Wei X., Wang K. X., Li X. H., Chen J. S.,J. Mater. Chem. A, 2015, 3, 13926 [3] Li X. H., Antonietti M., Angew. Chem. Int. Ed., 2013, 52, 4572 [4] Zhang J. J., Ge J. M., Wang H. H., Wei X., Li X. H., Chen J. S., ChemCatChem, 2016, 8, 3441 [5] Ge J. M., Zhang B., Lv L. B., Wang H. H., Ye T. N., Wei X., Su J., Wang K. X., Li X. H., Chen J. S., Nano Energy, 2015, 15, 567 [6] Li X. H., Wang X. C., Antonietti M., ACS Catal., 2012, 2, 2082 [7] Li X. H., Zhang J. S, Chen X. F., Fischer A., Thomas A., Antonietti M., Wang X. C., Chem. Mater., 2011, 23, 4344 [8] Ye T. N., Lv L. B., Li X. H., Xu M., Chen J. S., Angew. Chem. Int. Ed., 2014, 53, 6905 [9] Wang L. B., Hu X. L., Chem. Asian J., 2018, 13, 1518 [10] Li F., Zou Z., Small, 2018, 14, 1702961 [11] Thotiy M. M. O., Freunberger S. A., Peng Z. Q., Bruce P. G., Cells, 2013, 135, 494 [12] Deng X. Y., Li J. J., Ma L. Y., Sha J. W., Zhao N. Q., Mater. Chem. Front., 2019, 3, 2221 [13] Liu Z. C., Yuan X. H., Zhang S. S., Wang J., Huang Q. H., Yu N. F., Zhu Y. S., Fu L. J., Wang F. X., Chen Y. H., Wu Y. P., NPG Asia Materials, 2019, 11, 12 [14] Song Y., Liu T. Y., Qian F., Zhu C., Yao B., Duoss E., Spadaccini C., Worsley M., Li Y., J. Colloid Interface Sci., 2018, 509, 529 [15] Feng H. P., Tang L., Zeng G. M., Tang J., Deng Y. C., Yan M., Liu Y. N., Zhou Y. Y., Ren X. Y., Chen S., J. Mater. Chem. A, 2018, 6, 7310 [16] Bai Y. L., Liu Y. S., Ma C., Wang K. X., Chen J. S., ACS Nano, 2018, 12, 11503 [17] Raccichini R., Varzi A., Passerini S., Scrosati B., Nature Mater., 2015, 14, 271 [18] Tian W. Q., Wu X. Y., Wang K. X., Jiang Y. M., Wang J. F., Chen J. S., RSC Adv., 2013, 3, 10823 [19] Zhang H. J., Wu T. H., Wang K. X., Wu X. Y., Chen X. T., Jiang Y. M., Wei X., Chen J. S., J. Mater. Chem. A, 2013, 1, 12038 [20] Etacheri V., Wang C. W., O'Connell M. J., Chan C. K., Pol V. G., J. Mater. Chem. A, 2015, 3, 9861 [21] Wang K. X., Li Z. L., Wang Y. G., Liu H. M., Chen J. S., Holmes J., Zhou H. S.,J. Mater. Chem., 2010, 20, 9748 [22] Wang J. G., Liu H. Z., Zhang X. Y., Li X., Liu S. R., Kang F. Y., Small, 2018, 14, 1703950 [23] Kim Y. A., Kojima M., Muramatsu H., Umemoto S., Watanabe T., Oshida K. Y., Sato K., Ikeda T., Hayashi T., Endo M., Terrones M., Dresselhaus M. S., Electrochem. Commun, 2006, 2, 667 [24] Wang Q., Chen L. Q., Huang X. J., Electrochem Solid St., 2002, 5, A188 [25] Wang K. X., Li Y., Wu X. Y., Chen J. S.,J. Power Sources, 2012, 203, 140 [26] Gao K. Z., Niu Q. Y., Tang Q. H., Guo Y. Q., Wang L. Z., J. Electron. Mater., 2018, 47, 337 [27] Lei Z. B., Zhang J. T., Zhang L. L., Kumar N. A., Zhao X. S., Energ Environ. Sci., 2016, 9, 1891 [28] Fu W., Du F. H., Su J., Li X. H., Wei X., Ye T. N., Wang K. X., Chen J. S., Sci. Rep., 2014, 4, 4673 [29] Du F. H., Liu Y. S., Long J., Zhu Q. C., Wang K. X., Wei X., Chen J. S.,Chem. Commun., 2014,50, 9961 [30] Du F. H., Wang K. X., Fu W., Gao P. F., Wang J. F., Yang J., Chen J. S.,J. Mater. Chem. A, 2013, 1, 13648 [31] Wu Z. S., Ren W. C., Xu L., Li F., Cheng H. M.,ACS Nano, 2011, 5, 5463 [32] Wang G. X., Shen X. P., Yao J., Park J., Carbon, 2009, 47, 2049 [33] Yoo E., Kim J., Hosono E., Zhou, H. S., Kudo T., Honma I., Nano Lett., 2008, 8, 2277 [34] Zhang L. W., Liu J. Y., Bai L., Wang N., Chem. Res. Chinese Universities, 2021, 37(6), 1289 [35] Sun Q. H., Lu T. T., He J. J., Huang C. S., Chem. J. Chinese Universities, 2021, 42(2), 366 [36] Gao J., Sun Q. H., Huang C. S.,Chem. J. Chinese Universities, 2021, 42(5), 1501 [37] Shang H., Zou Z. C., Li L., Wang F., Liu H. B., Li Y. J., Li Y. L.,Angew. Chem. Int. Ed., 2018, 57, 774 [38] Huang C. S., Zhang S. L., Liu H. B., Li Y. J., Cui G. T., Li Y. L., Nano Energy, 2015, 11, 481 [39] Jang B., Koo J., Park M., Lee H., Nam J., Kwon Y., Lee, H., Appl. Phys. Lett., 2013, 103. 263904 [40] Zhang F., Wang K. X., Li G. D., Chen J. S., Electrochem. Commun., 2009, 11, 130 [41] Li Z. L., Jaroniec M., Papakonstantinou P., Tobin J. M., Vohrer U., Kumar S., Attard G., Holmes J. D., Chem. Mater., 2007, 19, 3349 [42] Wang Q., Li H., Chen L. Q., Huang X. J., Solid State Ionics, 2002, 152, 43 [43] Li W. H., Li M. S., Wang M., Zeng L. C., Yu Y., Nano Energy, 2015, 13, 693 [44] Yang Z. J., Wu X. Y., Ma C., Hou C. C., Xu S. M., Wei X., Wang K. X., Chen J. S., Chem. Res. Chinese Universities, 2020, 36(1), 91 [45] Hu Y. Y., Bai Y. L., Wu X. Y., Wei X., Wang K. X., Chen J. S.,J. Alloys Compd., 2019,797, 1126 [46] Li M., Ma C., Zhu Q. C., Xu S. M., Wei X., Mu Y. M., Tang W. P., Wang K. X., Chen J. S., Dalton Trans., 2017, 46, 5025 [47] Wang Z. K., Shu J., Zhu Q. C., Cao B. Y., Chen H., Wu X. Y., Bartlett B. M., Wang K. X., Chen J. S., J. Power Sources, 2016, 307, 426 [48] Fu W., Du F. H., Wang K. X., Ye T. N., Wei X., Chen J. S., J. Mater. Chem. A, 2014, 2, 6960 [49] Chen X. T., Wang K. X., Zhai Y. B., Zhang H. J., Wu X. Y., Wei X., Chen J. S.,Dalton Trans., 2014, 43, 3137 [50] Wang Y. G., Wang Y. R., Hosono E. J., Wang K. X., Zhou H. S., Angew. Chem. Int. Ed., 2008, 47, 7461 [51] Han L. N., Wei X., Zhu Q. C., Xu S. M., Wang K. X., Chen J. S.,J. Mater. Chem. A, 2016, 4, 16698 [52] Wu J., Wu X. Y., Wei X., Wang K. X., Chen J. S., Chem. J. Chinese Universities, 2012, 33(7), 1540 [53] Zhai Y. P., Dou Y. Q., Zhao D. Y., Fulvio P. F., Mayes R. T., Dai S., Adv. Mater., 2011, 23, 4828 [54] Wang K. X., Wang Y. G., Wang Y. R., Hosono E., Zhou H. S., J. Phys. Chem. C, 2009, 113, 1093 [55] Wang K. X., Birjukovs P., Erts D., Phelan R., Morris M. A., Zhou H. S., Holmes J. D., J. Mater. Chem., 2009, 19, 1331 [56] Wang D. W., Li F., Liu M., Lu G. Q., Cheng H. M., Angew. Chem. Int. Ed., 2008, 47, 373 [57] Xu F., Tang Z. W., Huang S. Q., Chen L. Y., Liang Y. R., Mai W. C., Hong H., Fu R. W., Wu D. C., Nature Commun., 2015, 6, 7221 [58] Hao Q. Q., Zhang Z., Mao Y., Wang K. X., ChemNanoMat, 2022, 8, e20210038 [59] Wang K. X., Zhu Q. C., Chen J. S., Small, 2018, 14, 1800078 [60] Girishkumar G., McCloskey B., Luntz A. C., Swanson S., Wilcke W., J. Phys. Chem. Lett., 2010, 1, 2193 [61] Shao Y. Y., Ding F., Xiao J., Zhang J., Xu W., Park S., Zhang J. G., Wang Y., Liu J., Adv. Funct. Mater., 2013,23, 987 [62] Peng Z. Q., Freunberger S. A., Chen Y. H., Bruce P. G., Science, 2012, 337, 563 [63] Jung H. G., Hassoun J., Park, J. B., Sun Y. K., Scrosati B., Nature Chem., 2012, 4, 579 [64] Xiao J., Mei D. H., Li X. L., Xu W., Wang D. Y., Graff G. L., Bennett W. D., Nie Z., Saraf L. V., Aksay I. A., Liu J., Zhang J. G., Nano Lett., 2011, 11, 5071 [65] Mitchell R. R., Gallant B. M., Thompson C. V., Shao-Horn Y., Energy Environ. Sci., 2011, 4, 2952 [66] Xu S. M., Zhu Q. C., Du F. H., Li X. H., Wei X., Wang K. X., Chen J. S., Dalton Trans., 2015, 44, 8678 [67] Liu T., Leskes M., Yu W. J., Moore A. J., Zhou L, Bayley P. M., Kim G., Grey C. P.,Science, 2015, 350, 530 [68] Grande L., Paillard E., Hassoun J., Park J. B., Lee Y. J., Sun Y. K., Passerini S., Scrosati B., Adv. Mater., 2015, 27, 784 [69] Li Y. L., Wang J. J., Li X. F., Geng D. S., Li R. Y., Sun X. L., Chem. Commun., 2011,47, 9438 [70] Yoo E., Zhou H. S.,ACS Nano, 2011, 5, 3020 [71] Sun B., Huang X. D., Chen S. Q., Munroe P., Wang G. X., Nano Lett., 2014, 14, 3145 [72] Sun B., Liu H., Munroe P., Ahn H., Wang G. X., Nano Res., 2012, 5, 460 [73] Park J., Jeong J., Lee S., Jo C., Lee J.,ChemSusChem, 2015, 8, 3146 [74] Zhu Q. C., Xu S. M., Cai Z. P., Harris M. M., Wang K. X., Chen J. S., Energy Storage Mater., 2017, 7, 209 [75] Zhu Q. C., Xu S. M., Harris M. M., Ma C., Liu Y. S., Wei X., Xu H. S., Zhou Y. X., Cao Y. C., Wang K. X., Chen J. S., Adv. Funct. Mater., 2016, 26, 8514 [76] Zhu Q. C., Du F. H., Xu S. M., Wang Z. K., Wang K. X., Chen J. S., ACS Appl. Mater. Interfaces, 2016, 8, 3868 [77] Xu S. M., Liang X., Wu X. Y., Zhao S. L., Chen J., Wang K. X., Chen J. S., Nat. Commun., 2019, 10, 5810 [78] Xu S. M., Liang X., Liu X., Bai W. L., Liu Y. S., Cai Z. P., Zhang Q., Zhao C., Wang K. X., Chen J. S., Energy Storage Mater., 2020, 25, 52 [79] Liu Q. C., Xu J. J., Xu D., Zhang X. B., Nature Commun., 2015, 6, 7892 [80] Lim H. D., Yun Y. S., Cho S. Y., Park K. Y., Song M. Y., Jin H. J., Kang K., Carbon, 2017, 114, 311 [81] Lim H. D., Song H., Kim J., Gwon H., Bae Y., Park K. Y., Hong J., Kim H., Kim T., Kim Y. H., Lepro X., Ovalle-Robles R., Baughman R. H., Kang K., Angew. Chem. Int. Ed., 2014, 53, 3926 [82] Xu S. M., Liang X., Ren Z. C., Wang K. X., Chen J. S., Angew. Chem. Int. Ed., 2018, 57, 6825 [83] Verónica P., Montse C. C., Elizabeth C. M., Man H. H., Teófilo R., Energy Environ. Sci., 2013, 6, 2312 [84] Xu S. M., Ding Y. C., Liu X., Zhang Q., Wang K. X., Chen J. S., Adv. Energy Mater., 2018, 1802175 [85] Luo W., Shen F., Bommier C., Zhu H., Ji X., Hu L., Acc. Chem. Res., 2016, 49, 231 [86] Pramudita J. C., Sehrawat D., Goonetilleke D., Sharma N., Adv. Energy Mater., 2017, 7, 1602911 [87] Bai Y. L., Xarapatgvl R., Wu X. Y., Liu X., Liu Y. S., Wang K. X., Chen J. S., Nanoscale, 2019, 11, 17860 [88] Wu Z.,Y., Ma C., Bai Y. L., Liu, Y. S., Wang S. F., Wei X., Wang, K. X., Chen J. S., Dalton Trans., 2018, 47, 4885 [89] Share K., Cohn A. P., Carter R., Rogers B., Pint C. L., ACS Nano, 2016, 10, 9738 [90] Jian Z. L., Hwang S., Li Z. F., Hernandez A. S., Wang X. F., Xing Z. Y., Su D., Ji X. L., Adv. Funct. Mater., 2017, 27, 1700324 [91] Choi N. S., Chen Z., Freunberger S. A., Ji X., Sun Y. K., Amine K., Yushin G., Nazar L. F., Cho J., Bruce P. G., Angew. Chem. Int. Ed., 2012, 51, 9994 [92] Wang D. W., Zeng Q. C., Zhou G. M., Yin L. C., Li F., Cheng H. M., Gentle I. R., Lu G. Q. M., J. Mater. Chem. A, 2013, 1, 9382 [93] Zhao M. Q., Liu X. F., Zhang Q., Tian G. L., Huang J. Q., Zhu W. C., Wei F., ACS Nano, 2012, 6, 10759 [94] Li Z., Jiang Y., Yuan L. X., Yi Z. Q., Wu C., Liu Y., Strasser P., Huang Y. H., ACS Nano, 2014, 8, 9295 [95] Liu Y. S., Liu, X., Xu S. M., Bai Y. L., Ma C., Bai W. L., Wu X.,Y., Wei X., Wang K. X., Chen J. S., J. Mater. Chem. A, 2019, 7, 24524 [96] Liu Y. S., Bai Y. L., Liu X., Ma C., Wu X. Y., Wei X., Wang Z., Wang K. X., Chen J. S., Chem. Eng. J., 2019, 378, 122208 [97] Liu Y. S., Ma C., Bai Y. L., Wu X. Y., Zhu Q. C., Liu X., Liang X. H., Wei X., Wang K. X., Chen J. S., J. Mater. Chem. A, 2018, 6, 17473 [98] Li X. H., Wang X. C., Antoniettia M., Chem. Sci., 2012, 3, 2170 [99] Li X. H., Baar M., Blechert S., Antonietti M., Sci. Rep., 2013, 3, 1743 [100] Li X. H., Chen J. S., Wang X. C., Sun J. H., Antonietti M., J. Am. Chem. Soc., 2011, 133, 8074 [101] Zhang B., Zhao S. Y., Wang H. H., Zhao T. J., Liu Y. X., Lv L. B., Wei X., Li X. H., Chen J. S., Chem. Commun., 2017, 53, 10544 [102] Zhang B., Zhao T. J., Feng W. J., Liu Y. X., Wang H. H., Su H., Lv L. B., Li X. H., Chen J. S., Nano Res., 2018,11, 2450 [103] Su H., Zhang K. X., Zhang B., Wang H. H., Yu Q. Y., Li X. H., Antonietti M., Chen J. S., J. Am. Chem. Soc., 2017, 139, 811 [104] Xue Z. H., Su H., Yu Q. Y., Zhang B., Wang H. H., Li X. H., Chen J. S., Adv. Energy Mater. 2017, 7, 1602355 [105] Cai Y. Y., Li X. H., Zhang Y. N., Wei X., Wang K. X., Chen J. S., Angew. Chem. Int. Ed., 2013, 52, 11822 [106] Li X. H., Cai Y. Y., Gong L. H., Fu W., Wang K. X., Bao H. L., Wei X., Chen J. S., Chem. Eur. J., 2014, 20, 16732 [107] Gong L. H., Cai Y. Y., Li X. H., Zhang Y. N., Su J., Chen J. S., Green Chem., 2014, 16, 3746 |
[1] | FAN Kui, SUN Yining, XU Pengcheng, GUO Jian, LI Zhenhua, SHAO Mingfei. Single-atom Catalysts Based on Layered Double Hydroxides [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1185-1196. |
[2] | MA Chunrong, SONG Bingyi, MA Zhentao, WANG Xiaoqian, TIAN Lin, ZHANG Haoran, CHEN Cai, ZHENG Xusheng, YANG Li-ming, WU Yuen. A Supported Palladium on Gallium-based Liquid Metal Catalyst for Enhanced Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1219-1225. |
[3] | SONG Jingting, LIU Jia, LOH Kian Ping, CHEN Zhongxin. Ultrahigh Loading Copper Single Atom Catalyst for Palladium-free Wacker Oxidation [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1239-1242. |
[4] | SHU Chengyong, GAN Zhuofan, ZHOU Jia, WANG Zhen, TANG Wei. Highly Efficient Oxygen Reduction Reaction Fe-N-C Cathode in Long-durable Direct Glycol Fuel Cells [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1268-1274. |
[5] | SONG Weiyu, LV Xintong, GAO Yang, WANG Lu. Photocatalytic HER Performance of TiO2-supported Single Atom Catalyst Based on Electronic Regulation:A DFT Study [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1025-1031. |
[6] | DU Shihao, BIAN Xuanang, ZHAO Yunxuan, SHI Run, and ZHANG Tierui. Progress and Prospect of Photothermal Catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(3): 723-734. |
[7] | HAO Zhimin, LIU Dapeng, GE Huaiyun, ZUO Xintao, FENG Xilan, SHAO Mingzhe, YU Haohan, YUAN Guobao, and ZHANG Yu. Preparation of Quaternary FeCoMoCu Metal Oxides for Oxygen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(3): 823-828. |
[8] | LIU Shujing, GUO Jia. Two-dimensional Covalent Organic Frameworks: Intrinsic Synergy Promoting Photocatalytic Hydrogen Evolution [J]. Chemical Research in Chinese Universities, 2022, 38(2): 373-381. |
[9] | WANG Tianxiong, MU Zhenjie, DING Xuesong and HAN Baohang. Functionalized COFs with Quaternary Phosphonium Salt for Versatilely Catalyzing Chemical Transformations of CO2 [J]. Chemical Research in Chinese Universities, 2022, 38(2): 446-455. |
[10] | ZHENG Zhiqiang, HE Feng, XUE Yurui, LI Yuliang. Loading Nickel Atoms on GDY for Efficient CO2 Fixation and Conversion [J]. Chemical Research in Chinese Universities, 2022, 38(1): 92-98. |
[11] | HU Guilin, HE Jingyi, LI Yongjun. Application of Graphdiyne and Its Analogues in Photocatalysis and Photoelectrochemistry [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1195-1212. |
[12] | SONG Congying, LI Guoxing. Graphdiyne: A Versatile Material in Electrochemical Energy Conversion and Storage [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1224-1241. |
[13] | FU Xinliang, ZHU Aonan, CHEN Xiaojie, ZHANG Shifu, WANG Mei, YUAN Mingjian. Stabilization of Cu/Ni Alloy Nanoparticles with Graphdiyne Enabling Efficient CO2 Reduction [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1328-1333. |
[14] | ZHANG Chao, LI Yuliang. Graphdiyne Based Atomic Catalyst: an Emerging Star for Energy Conversion [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1149-1157. |
[15] | SONG Yang, TAO Lei, ZHANG Yanfang, PAN Jinbo, DU Shixuan. A DFT Investigation on the Electronic Structures and Au Adatom Assisted Hydrogenation of Graphene Nanoflake Array [J]. Chemical Research in Chinese Universities, 2021, 37(5): 1110-1115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||