Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3): 723-734.doi: 10.1007/s40242-022-2039-4
• Reviews • Previous Articles Next Articles
DU Shihao1,2, BIAN Xuanang1,2, ZHAO Yunxuan1, SHI Run1, and ZHANG Tierui1,2
Received:
2022-01-30
Revised:
2022-03-14
Online:
2022-06-01
Published:
2022-05-26
Contact:
ZHANG Tierui
E-mail:tierui@mail.ipc.ac.cn
Supported by:
DU Shihao, BIAN Xuanang, ZHAO Yunxuan, SHI Run, and ZHANG Tierui. Progress and Prospect of Photothermal Catalysis[J]. Chemical Research in Chinese Universities, 2022, 38(3): 723-734.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Lewis N. S., Nocera D. G., Proc. Natl. Acad. Sci. USA, 2006, 103, 15729 [2] Li D., Han D., Qu S. N., Liu L., Jing P. T., Zhou D., Ji W. Y., Wang X. Y., Zhang T. F., Shen D. Z., Light:Sci. Appl., 2016, 5, e16120 [3] Sampaio P. G. V., Gonzalez M. O. A., Renew. Sust. Energ. Rev., 2017, 74, 590 [4] Mathews I., Kantareddy S. N., Buonassisi T., Peters I. M., Joule, 2019, 3, 1415 [5] Guo Q., Zhou C., Ma Z., Yang X., Adv. Mater., 2019, 31, 1901997 [6] Zhang Z., Liang Y., Huang H., Liu X., Li Q., Chen L., Xu D., Angew. Chem., Int. Ed., 2019, 58, 7263 [7] Yuan Y. J., Fang G., Chen D., Huang Y., Yang L. X., Cao D. P., Wang J., Yu Z. T., Zou Z. G., Dalton Trans., 2018, 47, 5652 [8] Zhao Y., Liu T., Chen R., Zeng B., Tao X., Li J., Jin X., Li R., Li C., ChemCatChem, 2020, 12, 1585 [9] Qi R., Liu J., Yuan H., Yu Y., Nanomaterials, 2021, 11, 2221 [10] Yu X., Yang L., Xuan Y., Liu X. L., Zhang K., Nano Energy, 2021, 84, 105953 [11] Vedrine J. C., Catalysts, 2017, 7, 341 [12] Kisch H., Angew. Chem., Int. Ed., 2013, 52, 812 [13] Zhang N., Guo Y., Wang X., Zhang S., Li Z., Zou Z., Dalton Trans., 2017, 46, 10673 [14] Dai B., Chen Y., Hao S. M., Huang H., Kou J., Lu C., Lin Z., Xu Z., J. Phys. Chem. Lett., 2020, 11, 7407 [15] Guo Y., Nan J., Xu Y., Cui F., Shi W., Zhu Y., J. Mater. Chem. A, 2020, 8, 10252 [16] Bai X., Jia T., Wang X., Hou S., Hao D., Ni B., Catal. Sci. Technol., 2021, 11, 5432 [17] Li X., Zhang N., Xu Y. J., ChemCatChem, 2015, 7, 2047 [18] Chen Y., Gu W., Tan L., Ao Z., An T., Wang S.,Appl. Catal., A, 2021, 618, 118127 [19] Cai M., Wu Z., Li Z., Wang L., Sun W., Tountas A. A., Li C., Wang S., Feng K., Xu A. B., Tang S., Tavasoli A., Peng M., Liu W., Helmy A. S., He L., Ozin G. A., Zhang X., Nat. Energy, 2021, 6, 807 [20] Lin L., Wang K., Yang K., Chen X., Fu X., Dai W., Appl. Catal., B, 2017, 204, 440 [21] Li Z., Zhang X., Liu J., Shi R., Waterhouse G. I. N., Wen X. D., Zhang T., Adv. Mater., 2021, 33, 2103248 [22] Li Z., Liu J., Zhao Y., Waterhouse G. I. N., Chen G., Shi R., Zhang X., Liu X., Wei Y., Wen X. D., Wu L. Z., Tung C. H., Zhang T., Adv. Mater., 2018, 30, 1800527 [23] Zhao J., Yang Q., Shi R., Waterhouse G. I. N., Zhang X., Wu L. Z., Tung C. H., Zhang T., NPG Asia Mater., 2020, 12, 5 [24] Li Y., Hao J., Song H., Zhang F., Bai X., Meng X., Zhang H., Wang S., Hu Y., Ye J., Nat. Commun., 2019, 10, 2359 [25] Li Z., Liu J., Zhao Y., Shi R., Waterhouse G. I. N., Wang Y., Wu L. Z., Tung C. H., Zhang T., Nano Energy, 2019, 60, 467 [26] Li Y., Li R., Li Z., Wei W., Ouyang S., Yuan H., Zhang T., Chem. Res. Chinese Universities, 2020, 36(5), 1006 [27] Wang Y., Zhao Y., Liu J., Li Z., Waterhouse G. I. N., Shi R., Wen X., Zhang T., Adv. Energy Mater., 2019, 10, 1902860 [28] Meng X., Wang T., Liu L., Ouyang S., Li P., Hu H., Kako T., Iwai H., Tanaka A., Ye J., Angew. Chem., Int. Ed., 2014, 53, 11478 [29] Li Z., Liu J., Shi R., Waterhouse G. I. N., Wen X. D., Zhang T., Adv. Energy Mater., 2021, 11, 2002783 [30] Xie B., Wong R. J., Tan T. H., Higham M., Gibson E. K., Decarolis D., Callison J., Aguey-Zinsou K. F., Bowker M., Catlow C. R. A., Scott J., Amal R., Nat. Commun., 2020, 11, 1615 [31] Li Y., Bai X., Yuan D., Zhang F., Li B., San X., Liang B., Wang S., Luo J., Fu G.,Nat. Commun., 2022, 13, 776 [32] Kandemir T., Schuster M. E., Senyshyn A., Behrens M., Schlogl R., Angew. Chem., Int. Ed., 2013, 52, 12723 [33] Kitano M., Inoue Y., Ishikawa H., Yamagata K., Nakao T., Tada T., Matsuishi S., Yokoyama T., Hara M., Hosono H., Chem. Sci., 2016, 7, 4036 [34] Aika K. i., Catal. Today, 2017, 286, 14 [35] Falicov L. M., Somorjai G. A., Proc. Atl. Acad. Sci. USA, 1985, 82, 2207 [36] Rai R. K., Maksoud W. A., Morlanés N., Harb M., Ahmad R., Genovese A., Hedhili M. N., Cavallo L. Basset J. M., ACS Catal., 2022, 12, 587 [37] Fu R., Wu Z., Pan Z., Gao Z., Li Z., Kong X., Li L., Angew. Chem., Int. Ed., 2021, 60, 11173 [38] Lu Y., Yang Y., Zhang T., Ge Z., Chang H., Xiao P., Xie Y., Hua L., Li Q., Li H., Ma B., Guan N., Ma Y., Chen Y.,ACS Nano,2016,10, 10507 [39] Yang Y., Zhang T., Ge Z., Lu Y., Chang H., Xiao P., Zhao R., Ma Y., Chen Y., Carbon, 2017, 124, 72 [40] Mao C., Yu L., Li J., Zhao J., Zhang L., Appl. Catal., B, 2018, 224, 612 [41] Mao C., Li H., Gu H., Wang J., Zou Y., Qi G., Xu J., Deng F., Shen W., Li J., Liu S., Zhao J., Zhang L., Chem, 2019, 5, 2702 [42] Li X., Zhang X., Everitt H. O., Liu J., Nano Lett., 2019, 19, 1706 [43] Zheng J., Lu L., Lebedev K., Wu S., Zhao P., McPherson I. J., Wu T. S., Kato R., Li Y., Ho P. L., Li G., Bai L., Sun J., Prabhakaran D., Taylor R. A., Soo Y. L., Suenaga K., Tsang S. C. E., Chem. Catal., 2021, 1, 162 [44] Ali I., Asim M., Khan T. A., J. Environ. Manage., 2012, 113, 170 [45] Guo X., Wang J., Mar. Pollut. Bull., 2019, 142, 1 [46] Rueda-Marquez J. J., Levchuk I., Ibanez P. F., Sillanpaa M., J. Clean Prod., 2020, 258, 120694 [47] Yang Y., Li Y., Mao M., Zeng M., Zhao X., ACS Appl. Mater. Interfaces, 2017, 9, 2350 [48] Chen X., Cai S., Yu E., Li J., Chen J., Jia H., Appl. Surf. Sci., 2019, 484, 479 [49] Yu E., Li J., Chen J., Chen J., Hong Z., Jia H.,J. Hazard. Mater., 2020, 388, 121800 [50] Lai B. H., Lin Y. R., Chen D. H., Chem. Eng. J., 2013, 223, 418 [51] Ye L., Chu K. H., Wang B., Wu D., Xie H., Huang G., Yip H. Y., Wong P. K., Chem. Commun., 2016, 52, 11657 [52] Hu X., Xie Z., Tang Q., Wang H., Zhang L., Wang J., Appl. Catal. B, 2021, 298, 120635 [53] Li Y., Wang C., Song M., Li D., Zhang X., Liu Y., Appl. Catal. B, 2019, 243, 760 [54] Li D., Huang Y., Li S., Wang C., Li Y., Zhang X., Liu Y., Chin. J. Catal., 2020, 41, 154 [55] Cheng C., Wang J., Guo X., Xing F., Huang C., Song M., Appl. Surf. Sci., 2021, 557, 149812 [56] Li M., Sun J., Chen G., Yao S., Cong B., Liu P., Appl. Catal. B, 2021, 298, 120573 [57] Hoch L. B., O'brien P. G., Jelle A., Sandhel A., Perovic D. D., Mims C. A., Ozin G. A., ACS Nano, 2016, 10, 9017 [58] Nguyen N. T., Xia M., Duchesne P. N., Wang L., Mao C., Jelle A. A., Yan T., Li P., Lu Z. H., Ozin G. A., Nano Lett., 2021, 21, 1311 [59] Li Y., Wen M., Wang Y., Tian G., Wang C., Zhao J., Angew. Chem. Int. Ed., 2021, 60, 910 [60] Wu M. C., Deokar A. R., Liao J. H., Shih P. Y., Ling Y. C., ACS Nano, 2013, 7, 1281 [61] Zhong H., Zhu Z., Lin J., Cheung C. F., Lu V. L., Yan F., Chan C. Y., Li G., ACS Nano, 2020, 14, 6213 [62] Xu M., Hu X., Wang S., Yu J., Zhu D., Wang J., J Catal., 2019, 377, 652 [63] Cai S., Chen J., Li Q., Jia H., ACS Appl. Mater. Interfaces, 2021, 13, 14221 [64] Nikitenko S. I., Chave T., Cau C., Brau H. P., Flaud V., ACS Catal., 2015, 5, 4790 [65] Song R., Liu M., Luo B., Geng J., Jing D., AICHE J., 2020, 66, e17008 [66] Zhao T., Xing Z., Xiu Z., Li Z., Chen P., Zhu Q., Zhou W., J. Hazard. Mater., 2019, 364, 117 [67] Lu L., Xu X., An K., Wang Y., Shi F. N., ACS Sustainable Chem. Eng., 2018, 6, 11869 [68] Guo Y., Mao L., Tang Y., Shang Q., Cai X., Zhang J., Hu H., Tan X., Liu L., Wang H., Yu T., Ye J., Nano Energy., 2022, 95, 107028 [69] Hu Q., Liu B., Zhang Z., Song M., Zhao X., J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2010, 25, 210 [70] Xie W., Li Y., Shi W., Zhao L., Zhao X., Fang P., Zheng F., Wang S., Chem. Eng. J., 2012, 213, 218 [71] Nagakawa H., Nagata M., ACS Appl. Mater. Interfaces, 2021, 13, 47511 [72] Gan Z., Wu X., Meng M., Zhu X., Yang L., Chu P. K., ACS Nano, 2014, 8, 9304 [73] Li Y., Shen Q., Guan R., Xue J., Liu X., Jia H., Xu B., Wu Y., J. Mater. Chem. C, 2020, 8, 1025 [74] Zhang X., Shi R., Li Z., Zhao J., Huang H., Zhou C., Zhang T., Adv. Energy Mater., 2022, 12, 2103740 [75] Wang L., Wang Y., Cheng Y., Liu Z., Guo Q., Ha M. N., Zhao Z.,J. Mater. Chem. A, 2016, 4, 5314 [76] Li P., Liu L., An W., Wang H., Cui W., Appl. Surf. Sci., 2021, 565, 150448 [77] Song R., Luo B., Liu M., Geng J., Jing D., Liu H., AICHE J., 2017, 63, 2916 [78] Song R., Luo B., Geng J., Song D., Jing D., Ind. Eng. Chem. Res., 2018, 57, 7846 [79] Luo S., Lin H., Wang Q., Ren X., Hernandez-Pinilla D., Nagao T., Xie Y., Yang G., Li S., Song H., Oshikiri M., Ye J., J. Am. Chem. Soc., 2021, 143, 12145 [80] Zeng M., Li Y., Mao M., Bai J., Ren L., Zhao X., ACS Catal., 2015, 5, 3278 [81] Borjigin B., Ding L., Li H., Wang X., Chem. Eng. J., 2020, 402, 126070 [82] Li Y., Wang C., Zheng H., Wan F., Yu F., Zhang X., Liu Y.,Appl. Surf. Sci., 2017, 391, 654 [83] Wang Z., Yu H., Xiao Y., Zhang L., Guo L., Zhang L., Dong X., Chem. Eng. J., 2020, 394, 125014 [84] Zhang H., Rong S., Zhang P., ACS Appl. Mater. Interfaces, 2021, 13, 18944 [85] Kang L., Liu X. Y., Wang A., Li L., Ren Y., Li X., Pan X., Li Y., Zong X., Liu H., Frenkel A. L., Zhang T., Angew. Chem. Int. Ed., 2020, 59, 12909 [86] Li Z., Shi R., Zhao J., Zhang T., Nano Res., 2021, 14, 4828 [87] Rej S., Mascaretti L., Santiago E. Y., Tomanec O., Kment S., Wang Z., Zboril R., Fornasiero P., Govorov A. O., Naldoni A., ACS Catal., 2020, 10, 5261 [88] De D. K., Olukunle O. C., Proceedings of the International Conference on Energy Economics and Environment, Greater Noida, India, 2015 |
[1] | SONG Weiyu, LV Xintong, GAO Yang, WANG Lu. Photocatalytic HER Performance of TiO2-supported Single Atom Catalyst Based on Electronic Regulation:A DFT Study [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1025-1031. |
[2] | LIU Shujing, GUO Jia. Two-dimensional Covalent Organic Frameworks: Intrinsic Synergy Promoting Photocatalytic Hydrogen Evolution [J]. Chemical Research in Chinese Universities, 2022, 38(2): 373-381. |
[3] | YOU Dongyu, ZHAO Yujuan, YANG Weiting, PAN Qinhe, LI Jiyang. Metal-Organic Framework-based Wood Aerogel for Effective Removal of Micro/Nano Plastics [J]. Chemical Research in Chinese Universities, 2022, 38(1): 186-191. |
[4] | HU Guilin, HE Jingyi, LI Yongjun. Application of Graphdiyne and Its Analogues in Photocatalysis and Photoelectrochemistry [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1195-1212. |
[5] | MA Yuying, HE Dayong, LIU Jiadi, WANG Yuannan, YANG Mei, WANG Hao, QIU Ju, LI Wenyan, LI Yongxin, WANG Ce. Adsorption and Visible Light Photocatalytic Degradation of Electrospun PAN@W18O49 Nanofibers [J]. Chemical Research in Chinese Universities, 2021, 37(3): 428-435. |
[6] | JIAN Shaoju, TIAN Zhiwei, ZHANG Kaiyin, DUAN Gaigai, YANG Weisen, JIANG Shaohua. Hydrothermal Synthesis of Ce-doped ZnO Heterojunction Supported on Carbon Nanofibers with High Visible Light Photocatalytic Activity [J]. Chemical Research in Chinese Universities, 2021, 37(3): 565-570. |
[7] | GAO Mengyue, CHENG Yanhua, ZHANG Junyan, XU Chengjian, YU Xiaoxiao, ZHU Meifang. Molecular Motions in Polymer Matrix for Microenvironment Sensing [J]. Chemical Research in Chinese Universities, 2021, 37(1): 90-99. |
[8] | CHEN Ting, ZHONG Lei, YANG Zhen, MOU Zhigang, LIU Lei, WANG Yan, SUN Jianhua, LEI Weiwei. Enhanced Visible-light Photocatalytic Activity of g-C3N4/Nitrogen-doped Graphene Quantum Dots/TiO2 Ternary Heterojunctions for Ciprofloxacin Degradation with Narrow Band Gap and High Charge Carrier Mobility [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1083-1090. |
[9] | JIANG Wenshuai, ZONG Xupeng, WANG Xiayan, SUN Zaicheng. Transparent Coating with TiO2 Nanorods for High-performance Photocatalytic Self-cleaning and Environmental Remediation [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1097-1101. |
[10] | WANG Wenke, Sandra Elizabeth SAJI, Siva KARUTURI, ZHENG Hong, MENG Guodong, CHENG Yonghong, YIN Zongyou. NIR-plasmon-enhanced Systems for Energy Conversion and Environmental Remediation [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1000-1005. |
[11] | CEN Qing, XIAO Wei, LIU Yingqi, WANG Qi, NAFADY Ayman, MA Shengqian. Fabrication of Fe-POMs as Visible-light-active Heterogeneous Photocatalyst [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1128-1135. |
[12] | WANG Changhua, ZHANG Xintong. Anatase/Bronze TiO2 Heterojunction: Enhanced Photocatalysis and Prospect in Photothermal Catalysis [J]. Chemical Research in Chinese Universities, 2020, 36(6): 992-999. |
[13] | LI Yuan, LI Ruizhe, LI Zhenhua, WEI Weiqin, OUYANG Shuxin, YUAN Hong, ZHANG Tierui. Effect of Support on Catalytic Performance of Photothermal Fischer-Tropsch Synthesis to Produce Lower Olefins over Fe5C2-based Catalysts [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1006-1012. |
[14] | YU Qiuying, LIN Xiu, LI Xinhao, CHEN Jiesheng. Photocatalytic Stille Cross-coupling on Gold/g-C3N4 Nano-heterojunction [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1013-1016. |
[15] | LI Xiaodong, SU Qing, LIU Ziqian, LUO Kexin, LI Guanghua, WU Qiaolin. A Triformylphloroglucinol-based Covalent Organic Polymer: Synthesis, Characterization and Its Application in Visible-light-driven Oxidative Coupling Reactions of Primary Amines [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1017-1023. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||