Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6): 1149-1157.doi: 10.1007/s40242-021-1349-2
• Reviews • Previous Articles Next Articles
ZHANG Chao1,2, LI Yuliang1,2
Received:
2021-08-31
Revised:
2021-09-27
Online:
2021-11-23
Published:
2021-10-11
Contact:
LI Yuliang
E-mail:ylli@iccas.ac.cn
Supported by:
ZHANG Chao, LI Yuliang. Graphdiyne Based Atomic Catalyst: an Emerging Star for Energy Conversion[J]. Chemical Research in Chinese Universities, 2021, 37(6): 1149-1157.
[1] Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Li J., Zhang T., Nat. Chem., 2011, 3, 634 [2] Zhang H., Watanabe T., Okumura M., Haruta M., Toshima N., Nat. Mater., 2012, 11, 49 [3] Kyriakou G., Boucher M. B., Jewell A. D., Lewis E. A., Lawton T. J., Baber A. E., Tierney H. L., Flytzani-Stephanopoulos M., Sykes E. C. H., Science, 2012, 335, 1209 [4] Huang Z., Gu X., Cao Q., Hu P., Hao J., Li J., Tang X., Angew. Chem. Int. Ed., 2012, 51, 4198 [5] Moses-DeBusk M., Yoon M., Allard L. F., Mullins D. R., Wu Z., Yang X., Veith G., Stocks G. M., Narula C. K., J. Am. Chem. Soc., 2013, 135, 12634 [6] Song W., Hensen E. J. M., J. Phys. Chem. C., 2013, 117, 7721 [7] Wei H., Liu X., Wang A., Zhang L., Qiao B., Yang X., Huang Y., Miao S., Liu J., Zhang T., Nat. Commun., 2014, 5, 5634 [8] Zhao Y.-X., Li Z.-Y., Yuan Z., Li X.-N., He S.-G., Angew. Chem. Int. Ed., 2014, 53, 9482 [9] Shi Y., Zhao C., Wei H., Guo J., Liang S., Wang A., Zhang T., Liu J., Ma T., Adv. Mater., 2014, 26, 8147 [10] Li Z.-Y., Yuan Z., Li X.-N., Zhao Y.-X., He S.-G., J. Am. Chem. Soc., 2014, 136, 14307 [11] Li X.-N., Yuan Z., He S.-G., J. Am. Chem. Soc., 2014, 136, 3617 [12] Hu P., Huang Z., Amghouz Z., Makkee M., Xu F., Kapteijn F., Dikhtiarenko A., Chen Y., Gu X., Tang X., Angew. Chem. Int. Ed., 2014, 53, 3418 [13] Guo X., Fang G., Li G., Ma H., Fan H., Yu L., Ma C., Wu X., Deng D., Wei M., Tan D., Si R., Zhang S., Li J., Sun L., Tang Z., Pan X., Bao X., Science, 2014, 344, 616 [14] Deng D., Chen X., Yu L., Wu X., Liu Q., Liu Y., Yang H., Tian H., Hu Y., Du P., Si R., Wang J., Cui X., Li H., Xiao J., Xu T., Deng J., Yang F., Duchesne P. N., Zhang P., Zhou J., Sun L., Li J., Pan X., Bao X., Sci. Adv., 2015, 1, e1500462 [15] Fei H., Dong J., Arellano-Jiménez M. J., Ye G., Kim N. D., Samuel E. L. G., Peng Z., Zhu Z., Qin F., Bao J., Yacaman M. J., Ajayan P. M., Chen D., Tour J. M., Nat. Commun., 2015, 6, 8668 [16] Yan H., Cheng H., Yi H., Lin Y., Yao T., Wang C., Li J., Wei S., Lu J., J. Am. Chem. Soc., 2015, 137, 10484 [17] Pei G. X., Liu X. Y., Wang A., Lee A. F., Isaacs M. A., Li L., Pan X., Yang X., Wang X., Tai Z., Wilson K., Zhang T., ACS Catal., 2015, 5, 3717 [18] Liu P., Zhao Y., Qin R., Mo S., Chen G., Gu L., Chevrier D. M., Zhang P., Guo Q., Zang D., Wu B., Fu G., Zheng N., Science, 2016, 352, 797 [19] Qiao B., Liu J., Wang Y.-G., Lin Q., Liu X., Wang A., Li J., Zhang T., Liu J., ACS Catal., 2015, 5, 6249 [20] Thomas J. M., Nature, 2015, 525, 325 [21] Zhang Z., Zhu Y., Asakura H., Zhang B., Zhang J., Zhou M., Han Y., Tanaka T., Wang A., Zhang T., Yan N., Nat. Commun., 2017, 8, 16100 [22] Fang X., Shang Q., Wang Y., Jiao L., Yao T., Li Y., Zhang Q., Luo Y., Jiang H.-L., Adv. Mater., 2018, 30, 1705112 [23] Kuo C.-T., Lu Y., Kovarik L., Engelhard M., Karim A. M., ACS Catal., 2019, 9, 11030 [24] Zhang J., Zhao Y., Guo X., Chen C., Dong C.-L., Liu R.-S., Han C.-P., Li Y., Gogotsi Y., Wang G., Nat. Catal., 2018, 1, 985 [25] Narula C. K., Allard L. F., Wu Z., Sci. Rep., 2017, 7, 6231 [26] Xi W., Wang K., Shen Y., Ge M., Deng Z., Zhao Y., Cao Q., Ding Y., Hu G., Luo J., Nat. Commun., 2020, 11, 1919 [27] Jiao L., Wan G., Zhang R., Zhou H., Yu S.-H., Jiang H.-L., Angew. Chem. Int. Ed., 2018, 57, 8525 [28] Zhu C., Shi Q., Xu B. Z., Fu S., Wan G., Yang C., Yao S., Song J., Zhou H., Du D., Beckman S. P., Su D., Lin Y., Adv. Energy Mater., 2018, 8, 1801956 [29] Liu P., Qin R., Fu G., Zheng N., J. Am. Chem. Soc., 2017, 139, 2122 [30] Wang L., Zhang S., Zhu Y., Patlolla A., Shan J., Yoshida H., Takeda S., Frenkel A. I., Tao F., ACS Catal., 2013, 3, 1011 [31] Yardimci D., Serna P., Gates B. C., Chem-Eur. J., 2013, 19, 1235 [32] Lin J., Wang A., Qiao B., Liu X., Yang X., Wang X., Liang J., Li J., Liu J., Zhang T., J. Am. Chem. Soc., 2013, 135, 15314 [33] Qu Y., Li Z., Chen W., Lin Y., Yuan T., Yang Z., Zhao C., Wang J., Zhao C., Wang X., Zhou F., Zhuang Z., Wu Y., Li Y., Nat. Catal., 2018, 1, 781 [34] Wu P., Du P., Zhang H., Cai C., Phys. Chem. Chem. Phys., 2015, 17, 1441 [35] Tao H., Choi C., Ding L.-X., Jiang Z., Han Z., Jia M., Fan Q., Gao Y., Wang H., Robertson A. W., Hong S., Jung Y., Liu S., Sun Z., Chem, 2019, 5, 204 [36] Li X., Bi W., Zhang L., Tao S., Chu W., Zhang Q., Luo Y., Wu C., Xie Y., Adv. Mater., 2016, 28, 2427 [37] Gao G., Jiao Y., Waclawik E. R., Du A., J. Am. Chem. Soc., 2016, 138, 6292 [38] Choi C. H., Kim M., Kwon H. C., Cho S. J., Yun S., Kim H.-T., Mayrhofer K. J. J., Kim H., Choi M., Nat. Commun., 2016, 7, 10922 [39] Cheng N., Stambula S., Wang D., Banis M. N., Liu J., Riese A., Xiao B., Li R., Sham T.-K., Liu L.-M., Botton G. A., Sun X., Nat. Commun., 2016, 7, 13638 [40] Li G., Li Y., Liu H., Guo Y., Li Y., Zhu D., Chem. Commun., 2010, 46, 3256 [41] Li Y., Scientia Sinica Chimica, 2017, 47, 1045. [42] Huang C.-S., Li Y.-L., Acta Phys-Chim. Sin., 2016, 32, 1314 [43] Yu H., Xue Y., Li Y., Adv. Mater., 2019, 31, 1803101 [44] Zuo Z., Wang D., Zhang J., Lu F., Li Y., Adv. Mater., 2019, 31, 1803762 [45] Yu H., Xue Y., Huang B., Hui L., Zhang C., Fang Y., Liu Y., Zhao Y., Li Y., Liu H., Li Y., iScience, 2019, 11, 31 [46] Xue Y., Huang B., Yi Y., Guo Y., Zuo Z., Li Y., Jia Z., Liu H., Li Y., Nat. Commun., 2018, 9, 1460 [47] Hui L., Xue Y., Yu H., Liu Y., Fang Y., Xing C., Huang B., Li Y., J. Am. Chem. Soc., 2019, 141, 10677 [48] Xue Y., Li J., Xue Z., Li Y., Liu H., Li D., Yang W., Li Y., ACS Appl. Mater. Interfaces, 2016, 8, 31083 [49] Xue Y., Guo Y., Yi Y., Li Y., Liu H., Li D., Yang W., Li Y., Nano Energy, 2016, 30, 858 [50] Xue Y., Zuo Z., Li Y., Liu H., Li Y., Small, 2017, 13, 1700936 [51] Yu H., Xue Y., Hui L., Zhang C., Zhao Y., Li Z., Li Y., Adv. Funct. Mater., 2018, 28, 1707564 [52] Hui L., Xue Y., Jia D., Yu H., Zhang C., Li Y., Adv. Energy Mater., 2018, 8, 1800175 [53] Yu H., Xue Y., Hui L., Zhang C., Li Y., Zuo Z., Zhao Y., Li Z., Li Y., Adv. Mater., 2018, 30, 1707082 [54] Hui L., Xue Y., Huang B., Yu H., Zhang C., Zhang D., Jia D., Zhao Y., Li Y., Liu H., Li Y., Nat. Commun., 2018, 9, 5309 [55] Xing C., Xue Y., Huang B., Yu H., Hui L., Fang Y., Liu Y., Zhao Y., Li Z., Li Y., Angew. Chem. Int. Ed., 2019, 58, 13897 [56] Fang Y., Xue Y., Hui L., Yu H., Liu Y., Xing C., Lu F., He F., Liu H., Li Y., Nano Energy, 2019, 59, 591 [57] Zhang C., Xue Y., Hui L., Fang Y., Liu Y., Li Y., Mater. Chem. Front., 2021, 5, 5305 [58] Yu H., Xue Y., Hui L., He F., Zhang C., Liu Y., Fang Y., Xing C., Li Y., Liu H., Li Y., Nano Energy, 2019, 64, 103928 [59] Hui L., Xue Y., He F., Jia D., Li Y., Nano Energy, 2019, 55, 135 [60] Liu R., Liu H., Li Y., Yi Y., Shang X., Zhang S., Yu X., Zhang S., Cao H., Zhang G., Nanoscale, 2014, 6, 11336 [61] Zhang S., Cai Y., He H., Zhang Y., Liu R., Cao H., Wang M., Liu J., Zhang G., Li Y., Liu H., Li B., J. Mater. Chem. A, 2016, 4, 4738 [62] Lv Q., Si W., Yang Z., Wang N., Tu Z., Yi Y., Huang C., Jiang L., Zhang M., He J., Long Y., ACS Appl. Mater. Interfaces, 2017, 9, 29744 [63] Qi H., Yu P., Wang Y., Han G., Liu H., Yi Y., Li Y., Mao L., J. Am. Chem. Soc., 2015, 137, 5260 [64] Hui L., Xue Y., Yu H., Zhang C., Huang B., Li Y., Chemphyschem, 2020, 21, 2145 [65] Du Y., Xue Y., Zhang C., Liu Y., Fang Y., Xing C., He F., Li Y., Adv. Energy Mater., 2021, 11, 2100234 [66] Wang Z., Zheng Z., Xue Y., He F., Li Y., Adv. Energy Mater., 2021, 11, 2170126 [67] Zhao Y., Wan J., Yao H., Zhang L., Lin K., Wang L., Yang N., Liu D., Song L., Zhu J., Gu L., Liu L., Zhao H., Li Y., Wang D., Nat. Chem., 2018, 10, 924 [68] Whittingham M. S., Chem. Rev., 2004, 104, 4271 [69] Simon P., Gogotsi Y., Nat. Mater., 2008, 7, 845 [70] Huang C., Zhang S., Liu H., Li Y., Cui G., Li Y., Nano Energy, 2015, 11, 481 [71] Zuo Z., Shang H., Chen Y., Li J., Liu H., Li Y., Li Y., Chem. Commun., 2017, 53, 8074 [72] Jia Z., Zuo Z., Yi Y., Liu H., Li D., Li Y., Li Y., Nano Energy, 2017, 33, 343 [73] Shang H., Zuo Z., Li L., Wang F., Liu H., Li Y., Li Y., Angew. Chem. Int. Ed., 2018, 57, 774 [74] Shang H., Zuo Z., Yu L., Wang F., He F., Li Y., Adv. Mater., 2018, 30, 1801459 [75] Li L., Zuo Z., Shang H., Wang F., Li Y., Nano Energy, 2018, 53, 135 [76] Wang F., Zuo Z., Li L., He F., Lu F., Li Y., Adv. Mater., 2019, 31, 1806272 [77] Shang H., Zuo Z., Zheng H., Li K., Tu Z., Yi Y., Liu H., Li Y., Li Y., Nano Energy, 2018, 44, 144 [78] Wang F., Zuo Z., Shang H., Zhao Y., Li Y., ACS Appl. Mater. Interfaces, 2019, 11, 2599 [79] He J., Wang N., Cui Z., Du H., Fu L., Huang C., Yang Z., Shen X., Yi Y., Tu Z., Li Y., Nat. Commun., 2017, 8, 1172 [80] Wang N., He J., Tu Z., Yang Z., Zhao F., Li X., Huang C., Wang K., Jiu T., Yi Y., Li Y., Angew. Chem. Int. Ed., 2017, 56, 10740 [81] Wang N., Li X., Tu Z., Zhao F., He J., Guan Z., Huang C., Yi Y., Li Y., Angew. Chem. Int. Ed., 2018, 57, 3968 [82] Chen S., Shi G., Adv. Mater., 2017, 29, 1605448 [83] Xiao J., Shi J., Liu H., Xu Y., Lv S., Luo Y., Li D., Meng Q., Li Y., Adv. Energy Mater., 2015, 5, 1401943 [84] Ren H., Shao H., Zhang L., Guo D., Jin Q., Yu R., Wang L., Li Y., Wang Y., Zhao H., Wang D., Adv. Energy Mater., 2015, 5, 1500296 [85] Jin Z., Yuan M., Li H., Yang H., Zhou Q., Liu H., Lan X., Liu M., Wang J., Sargent E. H., Li Y., Adv. Funct. Mater., 2016, 26, 5284 [86] Kuang C., Tang G., Jiu T., Yang H., Liu H., Li B., Luo W., Li X., Zhang W., Lu F., Fang J., Li Y., Nano Lett., 2015, 15, 2756 [87] Gao X., Ren H., Zhou J., Du R., Yin C., Liu R., Peng H., Tong L., Liu Z., Zhang J., Chem. Mater., 2017, 29, 5777 [88] Li J., Jiu T., Chen S., Liu L., Yao Q., Bi F., Zhao C., Wang Z., Zhao M., Zhang G., Xue Y., Lu F., Li Y., Nano Lett., 2018, 18, 6941 [89] Li J., Zhao M., Zhao C., Jian H., Wang N., Yao L., Huang C., Zhao Y., Jiu T., ACS Appl. Mater. Interfaces, 2019, 11, 2626 [90] He J., Ma S. Y., Zhou P., Zhang C. X., He C., Sun L. Z., J. Phys. Chem. C., 2012, 116, 26313 [91] Liu L., Corma A., Nat. Rev. Mater., 2021, 6, 244 [92] Yin H., Zhao S., Zhao K., Muqsit A., Tang H., Chang L., Zhao H., Gao Y., Tang Z., Nat. Commun., 2015, 6, 6430 [93] Jaramillo T. F., Jørgensen K. P., Bonde J., Nielsen J. H., Horch S., Chorkendorff I., Science, 2007, 317, 100 [94] Yin X.-P., Wang H.-J., Tang S.-F., Lu X.-L., Shu M., Si R., Lu T.-B., Angew. Chem. Int. Ed., 2018, 57, 9382 [95] Yu H., Hui L., Xue Y., Liu Y., Fang Y., Xing C., Zhang C., Zhang D., Chen X., Du Y., Wang Z., Gao Y., Huang B., Li Y., Nano Energy, 2020, 72, 104667 [96] Deng G., Wang T., Alshehri A. A., Alzahrani K. A., Wang Y., Ye H., Luo Y., Sun X., J. Mater. Chem. A, 2019, 7, 21674 [97] Lv J., Wu S., Tian Z., Ye Y., Liu J., Liang C., J. Mater. Chem. A, 2019, 7, 12627 [98] Yang X., Nash J., Anibal J., Dunwell M., Kattel S., Stavitski E., Attenkofer K., Chen J. G., Yan Y., Xu B., J. Am. Chem. Soc., 2018, 140, 13387 [99] Wu T., Zhu X., Xing Z., Mou S., Li C., Qiao Y., Liu Q., Luo Y., Shi X., Zhang Y., Sun X., Angew. Chem. Int. Ed., 2019, 58, 18449 [100] Chu K., Liu Y.-P., Wang J., Zhang H., ACS Appl. Energ. Mater., 2019, 2, 2288 [101] Liu Y.-P., Li Y.-B., Huang D.-J., Zhang H., Chu K., Chem:Eur. J., 2019, 25, 11933 [102] Zhang S., Zhao C., Liu Y., Li W., Wang J., Wang G., Zhang Y., Zhang H., Zhao H., Chem. Commun., 2019, 55, 2952 [103] Li Y., Chen X., Zhang M., Zhu Y., Ren W., Mei Z., Gu M., Pan F., Catal. Sci. Technol., 2019, 9, 803 [104] Xing Z., Kong W., Wu T., Xie H., Wang T., Luo Y., Shi X., Asiri A. M., Zhang Y., Sun X., ACS Sustain. Chem. Eng., 2019, 7, 12692 [105] Gao Y., Han Z., Hong S., Wu T., Li X., Qiu J., Sun Z., ACS Appl. Energ. Mater., 2019, 2, 6071 [106] Cui Q., Qin G., Wang W., Geethalakshmi K. R., Du A., Sun Q., J. Mater. Chem. A, 2019, 7, 14510 [107] Zou H., Rong W., Wei S., Ji Y., Duan L., P. Natl. Acad. Sci. U.S.A., 2020, 117, 29462 [108] Li J., Zhong L., Tong L., Yu Y., Liu Q., Zhang S., Yin C., Qiao L., Li S., Si R., Zhang J., Adv. Funct. Mater., 2019, 29, 1905423 [109] Yin X.-P., Tang S.-F., Zhang C., Wang H.-J., Si R., Lu X.-L., Lu T.-B., J. Mater. Chem. A, 2020, 8, 20925 |
[1] | BU Ran, LU Yingying, ZHANG Bing. Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1151-1162. |
[2] | WEI Xiao, LI Xinhao, WANG Kaixue and CHEN Jiesheng. Design of Functional Carbon Composite Materials for Energy Conversion and Storage [J]. Chemical Research in Chinese Universities, 2022, 38(3): 677-687. |
[3] | LAN Weifei, HU Ruifeng, HUANG Danrong, DONG Xu, SHEN Gangyi, CHANG Shan, DAI Dongsheng. Palladium Nanoparticles/Graphdiyne Oxide Nanocomposite with Excellent Peroxidase-like Activity and Its Application for Glutathione Detection [J]. Chemical Research in Chinese Universities, 2022, 38(2): 529-534. |
[4] | ZHENG Zhiqiang, HE Feng, XUE Yurui, LI Yuliang. Loading Nickel Atoms on GDY for Efficient CO2 Fixation and Conversion [J]. Chemical Research in Chinese Universities, 2022, 38(1): 92-98. |
[5] | LI Xiaodan, GUO Mengyu, CHEN Chunying. Graphdiyne: from Preparation to Biomedical Applications [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1176-1194. |
[6] | HU Guilin, HE Jingyi, LI Yongjun. Application of Graphdiyne and Its Analogues in Photocatalysis and Photoelectrochemistry [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1195-1212. |
[7] | MAN Yixiao, ZHAO Jinyu, LIU Shipeng, PAN Qingyan, ZHAO Yingjie. Heteroatom Doped Graphdiyne and Analogues: Synthesis, Structures and Applications [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1213-1223. |
[8] | SONG Congying, LI Guoxing. Graphdiyne: A Versatile Material in Electrochemical Energy Conversion and Storage [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1224-1241. |
[9] | WONG Hon Ho, SUN Mingzi, HUANG Bolong. Synergistic Effect of Graphdiyne-based Electrocatalysts [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1242-1256. |
[10] | LI Ru, ZHANG Mingjia, LI Xiaodong, MA Xiaodi, HUANG Changshui. Study of Graphdiyne-based Magnetic Materials [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1257-1267. |
[11] | LI Liang, ZUO Zicheng, HE Feng, JIANG Zhongqing, LI Yuliang. Nitrogen-rich Graphdiyne Film for Efficiently Suppressing the Methanol Crossover in Direct Methanol Fuel Cells [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1275-1282. |
[12] | LI Meiping, WANG Kaihang, LV Qing. N,P-co-Doped Graphdiyne as Efficient Metal-free Catalysts for Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1283-1288. |
[13] | ZHANG Luwei, LIU Jingyi, BAI Ling, WANG Ning. Diffusion Kinetics Study of Lithium Ion in the Graphdiyne Based Electrode [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1289-1295. |
[14] | LI Jiaofu, CHEN Yanhuan, WANG Fuhui, GUO Jie, HE Feng, LIU Huibiao. Graphdiyne Hybrid Nanowall Arrays for High-capacity Aqueous Rechargeable Zinc Ion Battery [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1301-1308. |
[15] | TANG Jin, ZHAO Min, CAI Xu, LIU Le, LI Xiaofang, JIU Tonggang. Graphdiyne Oxide Modified NiOx for Enhanced Charge Extraction in Inverted Planar MAPbI3 Perovskite Solar Cells [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1309-1316. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||