Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6): 1224-1241.doi: 10.1007/s40242-021-1338-5
• Reviews • Previous Articles Next Articles
SONG Congying, LI Guoxing
Received:
2021-08-29
Revised:
2021-09-18
Online:
2021-11-23
Published:
2021-11-23
Contact:
LI Guoxing
E-mail:gxli@sdu.edu.cn
Supported by:
SONG Congying, LI Guoxing. Graphdiyne: A Versatile Material in Electrochemical Energy Conversion and Storage[J]. Chemical Research in Chinese Universities, 2021, 37(6): 1224-1241.
[1] Guo R., Lv C., Xu W., Sun J., Zhu Y., Yang X., Li J., Sun J., Zhang L., Yang D., Adv. Energy Mater., 2020, 10, 1903652 [2] Wang G., Yu M., Feng X., Chem. Soc. Rev., 2021, 50, 2388 [3] Cai W., Yan C., Yao Y. X., Xu L., Chen X. R., Huang J. Q., Zhang Q., Angew. Chem. Int. Ed., 2021, 60, 13007 [4] Wang J., Su Y., Tian Y., Xiang X., Zhang J., Li S., He D., Carbon, 2021, 183, 259 [5] Taylor L. W., Dewey O. S., Headrick R. J., Komatsu N., Peraca N. M., Wehmeyer G., Kono J., Pasquali M., Carbon, 2021, 171, 689 [6] Tiwari S. K., Sahoo S., Wang N., Huczko A., J. Sci. Adv. Mater. Dev., 2020, 5, 10 [7] Wan W. B., Brand S. C., Pak J. J., Haley M. M., Chem. Eur. J., 2000, 6, 2044 [8] Baughman R., Eckhardt H., Kertesz M., J. Chem. Phys., 1987, 87, 6687 [9] Wang N., He J., Wang K., Zhao Y., Jiu T., Huang C., Li Y., Adv. Mater., 2019, 31, 1803202 [10] Li G., Li Y., Liu H., Guo Y., Li Y., Zhu D., Chem. Commun., 2010, 46, 3256 [11] Leenaerts O., Partoens B., Peeters F., Appl. Phys. Lett., 2013, 103, 013105 [12] Huang C., Zhao Y., Li Y., Adv. Mater., 2019, 31, 1904885 [13] Zhang Y., Pei Q., Wang C., Appl. Phys. Lett., 2012, 101, 081909 [14] Yue Q., Chang S., Kang J., Qin S., Li J., J. Phys. Chem. C, 2013, 117, 14804 [15] Luo G., Qian X., Liu H., Qin R., Zhou J., Li L., Gao Z., Wang E., Mei W.-N., Lu J., Phys. Rev. B, 2011, 84, 075439 [16] Qin X., Liu Y., Chi B., Zhao X., Li X., Nanoscale, 2016, 8, 15223 [17] Du Y., Zhou W., Gao J., Pan X., Li Y., Acc. Chem. Res., 2020, 53, 459 [18] Zheng Q., Luo G., Liu Q., Quhe R., Zheng J., Tang K., Gao Z., Nagase S., Lu J., Nanoscale, 2012, 4, 3990 [19] Matsuoka R., Sakamoto R., Hoshiko K., Sasaki S., Masunaga H., Nagashio K., Nishihara H., J. Am. Chem. Soc., 2017, 139, 3145 [20] Li C., Lu X., Han Y., Tang S., Ding Y., Liu R., Bao H., Li Y., Luo J., Lu T., Nano Res., 2018, 11, 1714 [21] Chopra S., RSC Adv., 2016, 6, 89934 [22] Luo G., Zheng Q., Mei W.-N., Lu J., Nagase S., J. Phys. Chem. C, 2013, 117, 13072 [23] Li J., Gao X., Liu B., Feng Q., Li X.-B., Huang M.-Y., Liu Z., Zhang J., Tung C.-H., Wu L.-Z., J. Am. Chem. Soc., 2016, 138, 3954 [24] Zhang Y., Huang P., Guo J., Shi R., Huang W., Shi Z., Wu L., Zhang F., Gao L., Li C., Adv. Mater., 2020, 32, 2001082 [25] Lin T., Wang J., ACS Appl. Mater. Inter., 2018, 11, 2638 [26] Li S., Chen Y., Liu H., Wang Y., Liu L., Lv F., Li Y., Wang S., Chem. Mater., 2017, 29, 6087 [27] Houshmand F., Jalili S., Schofield J., Phys. Chem. Res., 2016, 4, 231 [28] Ge C., Chen J., Tang S., Du Y., Tang N., ACS Appl. Mater. Inter., 2018, 11, 2707 [29] Gao X., Liu H., Wang D., Zhang J., Chem. Soc. Rev., 2019, 48, 908 [30] Zheng Y., Chen Y., Lin L., Sun Y., Liu H., Li Y., Du Y., Tang N., Appl. Phys. Lett., 2017, 111, 033101 [31] Chen J., Zhang W., Sun Y., Zheng Y., Tang N., Du Y., Sci. Rep., 2016, 6, 1 [32] Tang T., Tang N., Zheng Y., Wan X., Liu Y., Liu F., Xu Q., Du Y., Sci. Rep., 2015, 5, 1 [33] Zheng Y., Wan X., Tang N., Feng Q., Liu F., Du Y., Carbon, 2015, 89, 300 [34] Zhang M., Wang X., Sun H., Wang N., Lv Q., Cui W., Long Y., Huang C., Sci. Rep., 2017, 7, 1 [35] Ren J., Zhang N. C., Zhang S. B., Liu P. P., Fuller. Nanotub. Car. N., 2019, 27, 684 [36] Xie C., Wang N., Li X., Xu G., Huang C., Chem. Eur. J., 2020, 26, 569 [37] Xie J., Wang N., Dong X., Wang C., Du Z., Mei L., Yong Y., Huang C., Li Y., Gu Z., ACS Appl. Mater. Inter., 2018, 11, 2579 [38] Qian X., Ning Z., Li Y., Liu H., Ouyang C., Chen Q., Li Y., Dalton Trans., 2012, 41, 730 [39] Li G., Li Y., Qian X., Liu H., Lin H., Chen N., Li Y., J. Phys. Chem. C, 2011, 115, 2611 [40] Zhao F., Wang N., Zhang M., Sápi A., Yu J., Li X., Cui W., Yang Z., Huang C., Chem. Commun., 2018, 54, 6004 [41] Gao X., Zhu Y., Yi D., Zhou J., Zhang S., Yin C., Ding F., Zhang S., Yi X., Wang J., Sci. Adv., 2018, 4, eaat6378 [42] Li J., Xu J., Xie Z., Gao X., Zhou J., Xiong Y., Chen C., Zhang J., Liu Z., Adv. Mater., 2018, 30, 1800548 [43] Li J., Chen Y., Gao J., Zuo Z., Li Y., Liu H., Li Y., ACS Appl. Mater. Inter., 2018, 11, 2591 [44] Shang H., Zuo Z., Yu L., Wang F., He F., Li Y., Adv. Mater., 2018, 30, 1801459 [45] Liu R., Liu H., Li Y., Yi Y., Shang X., Zhang S., Yu X., Zhang S., Cao H., Zhang G., Nanoscale, 2014, 6, 11336 [46] Zhang S., Du H., He J., Huang C., Liu H., Cui G., Li Y., ACS Appl. Mater. Inter., 2016, 8, 8467 [47] Zhang S., Cai Y., He H., Zhang Y., Liu R., Cao H., Wang M., Liu J., Zhang G., Li Y., J. Mater. Chem. A, 2016, 4, 4738 [48] Shen H., Li Y., Shi Z., ACS Appl. Mater. Inter., 2018, 11, 2563 [49] Gao Y., Cai Z., Wu X., Lv Z., Wu P., Cai C., ACS Catal., 2018, 8, 10364 [50] Li Y., Li X., Meng Y., Hun X., Biosens. Bioelectron., 2019, 130, 269 [51] Zuo Z., Shang H., Chen Y., Li J., Liu H., Li Y., Li Y., Chem. Commun., 2017, 53, 8074 [52] Shang H., Zuo Z., Zheng H., Li K., Tu Z., Yi Y., Liu H., Li Y., Li Y., Nano Energy, 2018, 44, 144 [53] Dong R., Zhang T., Feng X., Chem. Rev., 2018, 118, 6189 [54] He J., Wang N., Cui Z., Du H., Fu L., Huang C., Yang Z., Shen X., Yi Y., Tu Z., Li Y., Nat. Commun., 2017, 8, 1 [55] Shen X., He J., Wang K., Li X., Wang X., Yang Z., Wang N., Zhang Y., Huang C., ChemSusChem, 2019, 12, 1342 [56] Sun C., Searles D. J., J. Phys. Chem. C, 2012, 116, 26222 [57] He J., Bao K., Cui W., Yu J., Huang C., Shen X., Cui Z., Wang N., Chem. Eur. J., 2018, 24, 1187 [58] Wang N., He J., Tu Z., Yang Z., Zhao F., Li X., Huang C., Wang K., Jiu T., Yi Y., Angew. Chem. Int. Ed., 2017, 129, 10880 [59] He J., Wang N., Yang Z., Shen X., Wang K., Huang C., Yi Y., Tu Z., Li Y., Energy Environ. Sci., 2018, 11, 2893 [60] Wang N., Li X., Tu Z., Zhao F., He J., Guan Z., Huang C., Yi Y., Li Y., Angew. Chem. Int. Ed., 2018, 130, 4032 [61] Yu H., Xue Y., Hui L., He F., Zhang C., Liu Y., Fang Y., Xing C., Li Y., Liu H., Nano Energy, 2019, 64, 103928 [62] Hui L., Xue Y., Huang B., Yu H., Zhang C., Zhang D., Jia D., Zhao Y., Li Y., Liu H., Nat. Commun., 2018, 9, 1 [63] Yao Y., Jin Z., Chen Y., Gao Z., Yan J., Liu H., Wang J., Li Y., Liu S. F., Carbon, 2018, 129, 228 [64] Li J., Gao X., Jiang X., Li X.-B., Liu Z., Zhang J., Tung C.-H., Wu L.-Z., ACS Catal., 2017, 7, 5209 [65] Xue Y., Huang B., Yi Y., Guo Y., Zuo Z., Li Y., Jia Z., Liu H., Li Y., Nat. Commun., 2018, 9, 1 [66] Yu H., Xue Y., Huang B., Hui L., Zhang C., Fang Y., Liu Y., Zhao Y., Li Y., Liu H., iScience, 2019, 11, 31 [67] Du H., Zhang Z., He J., Cui Z., Chai J., Ma J., Yang Z., Huang C., Cui G., Small, 2017, 13, 1702277 [68] Li B., Lai C., Zhang M., Zeng G., Liu S., Huang D., Qin L., Liu X., Yi H., Xu F., Adv. Energy Mater., 2020, 10, 2000177 [69] Lv Y., Wu X., Lin H., Li J., Zhang H., Guo J., Jia D., Zhang H., Small, 2021, 17, 2006442 [70] Zhang J., Wang F., Qi G., Cheng J., Chen L., Liu H., Wang B., Adv. Funct. Mater., 2021, 31, 2101423 [71] Li J., Zitolo A., Garcés-Pineda F. A., Asset T., Kodali M., Tang P., Arbiol J., Galán-Mascarós J. R., Atanassov P., Zenyuk I. V., Sougrati M. T., Jaouen F., ACS Catal., 2021, 11, 10028 [72] Peng J., Zhang W., Chen L., Wu T., Zheng M., Dong H., Hu H., Xiao Y., Liu Y., Liang Y. J., Chem. Eng. J., 2021, 404, 126461 [73] Dionigi F., Zeng Z., Sinev I., Merzdorf T., Deshpande S., Lopez M. B., Kunze S., Zegkinoglou I., Sarodnik H., Fan D., Nat. Commun., 2020, 11, 1 [74] Sun H., Chen L., Lian Y., Yang W., Lin L., Chen Y., Xu J., Wang D., Yang X., Rümmerli M. H., Adv. Mater., 2020, 32, 2006784 [75] Lv J., Liu P., Li R., Wang L., Zhang K., Zhou P., Huang X., Wang G., Appl. Catal. B, 2021, 298 120587 [76] Cheng L., Yuan C., Shen S., Yi X., Gong H., Yang K., Liu Z., ACS Nano, 2015, 9, 11090 [77] Yang L., Zhu X., Xiong S., Wu X., Shan Y., Chu P. K., ACS Appl. Mater. Inter., 2016, 8, 13966 [78] He D., Song X., Li W., Tang C., Liu J., Ke Z., Jiang C., Xiao X., Angew. Chem. Int. Ed., 2020, 132, 6996 [79] Chen H., Liang X., Liu Y., Ai X., Asefa T., Zou X., Adv. Mater., 2020, 32, 2002435 [80] Feng Z., Ma Y., Li Y., Li R., Liu J., Li H., Tang Y., Dai X., J. Phys. Condens. Matter, 2019, 31, 465201 [81] Liu R., Liu H., Li Y., Yi Y., Shang X., Zhang S., Yu X., Zhang S., Cao H., Zhang G., Nanoscale, 2014, 6, 11336 [82] Zhao Y., Wan J., Yao H., Zhang L., Lin K., Wang L., Yang N., Liu D., Song L., Zhu J., Nat. Chem., 2018, 10, 924 [83] Li G., Adv. Energy Mater., 2021, 11, 2002891 [84] Wang K., Wang N., He J., Yang Z., Shen X., Huang C., ACS Appl. Mater. Inter., 2017, 9, 40604 [85] Li G., Gao Y., He X., Huang Q., Chen S., Kim S., Wang D., Nat. Commun., 2017, 8, 1 [86] Huang C., Zhang S., Liu H., Li Y., Cui G., Li Y., Nano Energy, 2015, 11, 481 [87] Zhang S., Liu H., Huang C., Cui G., Li Y., Chem. Commun., 2015, 51, 1834 [88] Zhang S., He J., Zheng J., Huang C., Lv Q., Wang K., Wang N., Lan Z., J. Mater. Chem. A, 2017, 5, 2045 [89] Niaei A. H. F., Hussain T., Hankel M., Searles D. J., J. Power Sources, 2017, 343, 354 [90] Shen F., Luo W., Dai J., Yao Y., Zhu M., Hitz E., Tang Y., Chen Y., Sprenkle V. L., Li X., Adv. Mater., 2016, 6, 1600377 [91] Wu C., Jiang Y., Kopold P., van Aken P. A., Maier J., Yu Y., Adv. Mater., 2016, 28, 7276 [92] Li Y., Xu L., Liu H., Li Y., Chem. Soc. Rev., 2014, 43, 2572 [93] Georgakilas V., Perman J. A., Tucek J., Zboril R., Chem. Rev., 2015, 115, 4744 [94] Song C., Yan Q., Zhang T., Lin H., Ye H., Yao Q., Zhang S., Li Y., Wang G., LEE J. Y., Chem. Eng. J., 2021, 420, 130452 [95] Gao J., He J., Wang N., Li X., Yang Z., Wang K., Chen Y., Zhang Y., Huang C., Chem. Eng. J., 2019, 373, 660 [96] Lin Z., Liu G., Zheng Y., Lin Y., Huang Z., J. Mater. Chem. A, 2018, 6, 22655 |
[1] | FAN Kui, SUN Yining, XU Pengcheng, GUO Jian, LI Zhenhua, SHAO Mingfei. Single-atom Catalysts Based on Layered Double Hydroxides [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1185-1196. |
[2] | MA Chunrong, SONG Bingyi, MA Zhentao, WANG Xiaoqian, TIAN Lin, ZHANG Haoran, CHEN Cai, ZHENG Xusheng, YANG Li-ming, WU Yuen. A Supported Palladium on Gallium-based Liquid Metal Catalyst for Enhanced Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1219-1225. |
[3] | SONG Jingting, LIU Jia, LOH Kian Ping, CHEN Zhongxin. Ultrahigh Loading Copper Single Atom Catalyst for Palladium-free Wacker Oxidation [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1239-1242. |
[4] | SHU Chengyong, GAN Zhuofan, ZHOU Jia, WANG Zhen, TANG Wei. Highly Efficient Oxygen Reduction Reaction Fe-N-C Cathode in Long-durable Direct Glycol Fuel Cells [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1268-1274. |
[5] | SONG Weiyu, LV Xintong, GAO Yang, WANG Lu. Photocatalytic HER Performance of TiO2-supported Single Atom Catalyst Based on Electronic Regulation:A DFT Study [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1025-1031. |
[6] | WEI Xiao, LI Xinhao, WANG Kaixue and CHEN Jiesheng. Design of Functional Carbon Composite Materials for Energy Conversion and Storage [J]. Chemical Research in Chinese Universities, 2022, 38(3): 677-687. |
[7] | DU Shihao, BIAN Xuanang, ZHAO Yunxuan, SHI Run, and ZHANG Tierui. Progress and Prospect of Photothermal Catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(3): 723-734. |
[8] | HAO Zhimin, LIU Dapeng, GE Huaiyun, ZUO Xintao, FENG Xilan, SHAO Mingzhe, YU Haohan, YUAN Guobao, and ZHANG Yu. Preparation of Quaternary FeCoMoCu Metal Oxides for Oxygen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(3): 823-828. |
[9] | LIU Shujing, GUO Jia. Two-dimensional Covalent Organic Frameworks: Intrinsic Synergy Promoting Photocatalytic Hydrogen Evolution [J]. Chemical Research in Chinese Universities, 2022, 38(2): 373-381. |
[10] | DING Huimin, MAL Arindam, WANG Cheng. Energy Storage in Covalent Organic Frameworks: From Design Principles to Device Integration [J]. Chemical Research in Chinese Universities, 2022, 38(2): 356-363. |
[11] | WANG Tianxiong, MU Zhenjie, DING Xuesong and HAN Baohang. Functionalized COFs with Quaternary Phosphonium Salt for Versatilely Catalyzing Chemical Transformations of CO2 [J]. Chemical Research in Chinese Universities, 2022, 38(2): 446-455. |
[12] | LAN Weifei, HU Ruifeng, HUANG Danrong, DONG Xu, SHEN Gangyi, CHANG Shan, DAI Dongsheng. Palladium Nanoparticles/Graphdiyne Oxide Nanocomposite with Excellent Peroxidase-like Activity and Its Application for Glutathione Detection [J]. Chemical Research in Chinese Universities, 2022, 38(2): 529-534. |
[13] | ZHENG Zhiqiang, HE Feng, XUE Yurui, LI Yuliang. Loading Nickel Atoms on GDY for Efficient CO2 Fixation and Conversion [J]. Chemical Research in Chinese Universities, 2022, 38(1): 92-98. |
[14] | LI Xiaodan, GUO Mengyu, CHEN Chunying. Graphdiyne: from Preparation to Biomedical Applications [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1176-1194. |
[15] | HU Guilin, HE Jingyi, LI Yongjun. Application of Graphdiyne and Its Analogues in Photocatalysis and Photoelectrochemistry [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1195-1212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||