Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6): 1195-1212.doi: 10.1007/s40242-021-1337-6
• Reviews • Previous Articles Next Articles
HU Guilin1,2, HE Jingyi1,2, LI Yongjun1,2
Received:
2021-08-27
Revised:
2021-10-01
Online:
2021-11-23
Published:
2021-11-23
Contact:
LI Yongjun
E-mail:liyj@iccas.ac.cn
Supported by:
HU Guilin, HE Jingyi, LI Yongjun. Application of Graphdiyne and Its Analogues in Photocatalysis and Photoelectrochemistry[J]. Chemical Research in Chinese Universities, 2021, 37(6): 1195-1212.
[1] Hirsch A., Nat. Mater., 2010, 9, 868 [2] Baughman R. H., Zakhidov A. A., de Heer W. A., Science, 2002, 297, 787 [3] Kroto H. W., Heath J. R., O'Brien S. C., Curl R. F., Smalley R. E., Nature, 1985, 318, 162 [4] Novoselov K. S., Jiang D., Schedin F., Booth T. J., Khotkevich V. V., Morozov S. V., Geim A. K., Proc. Natl. Acad. Sci. USA, 2005, 102, 10451 [5] Gao X., Liu H., Wang D., Zhang J., Chem. Soc. Rev., 2019, 48, 908 [6] Baughman R. H., Eckhardt H., Kertesz M., J. Chem. Phys., 1987, 87, 6687 [7] Li G., Li Y., Liu H., Guo Y., Li Y., Zhu D., Chem. Commun., 2010, 46, 3256 [8] Li J., Gao X., Zhu L., Ghazzal M. N., Zhang J., Tung C.-H., Wu L.-Z., Energy Environ. Sci., 2020, 13, 1326 [9] Min H., Qi Y., Chen Y., Zhang Y., Han X., Xu Y., Liu Y., Hu J., Liu H., Li Y., ACS Appl Mater Interfaces, 2019, 11, 32798 [10] Zhou W., Shen H., Zeng Y., Yi Y., Zuo Z., Li Y., Li Y., Angew. Chem. Int. Ed., 2020, 59, 4908 [11] Jia Z., Li Y., Zuo Z., Liu H., Li D., Li Y., Adv. Electron. Mater., 2017, 3, 1700133 [12] Matsuoka R., Sakamoto R., Hoshiko K., Sasaki S., Masunaga H., Nagashio K., Nishihara H., J. Am. Chem. Soc., 2017, 139, 3145 [13] Liu R., Gao X., Zhou J., Xu H., Li Z., Zhang S., Xie Z., Zhang J., Liu Z., Adv. Mater., 2017, 29, 1604665 [14] Li J., Xiong Y., Xie Z., Gao X., Zhou J., Yin C., Tong L., Chen C., Liu Z., Zhang J., ACS Appl. Mater. Interfaces, 2019, 11, 2734 [15] Zuo Z., Shang H., Chen Y., Li J., Liu H., Li Y., Li Y., Chem. Commun., 2017, 53, 8074 [16] Shen H., Zhou W., He F., Gu Y., Li Y., Li Y., J. Mater. Chem. A, 2020, 8, 4850 [17] Kan X., Ban Y., Wu C., Pan Q., Liu H., Song J., Zuo Z., Li Z., Zhao Y., ACS Appl Mater Interfaces, 2018, 10, 53 [18] Zhao Y., Wan J., Yao H., Zhang L., Lin K., Wang L., Yang N., Liu D., Song L., Zhu J., Nat. Chem., 2018, 10, 924 [19] Xing C., Xue Y., Huang B., Yu H., Hui L., Fang Y., Liu Y., Zhao Y., Li Z., Li Y., Angew. Chem. Int. Ed., 2019, 58, 13897 [20] Zhao Y., Yang N., Yao H., Liu D., Song L., Zhu J., Li S., Gu L., Lin K., Wang D., J. Am. Chem. Soc., 2019, 141, 7240 [21] Xie C., Hu X., Guan Z., Li X., Zhao F., Song Y., Li Y., Li X., Wang N., Huang C., Angew. Chem. Int. Ed., 2020, 59, 13542 [22] Li X., Wang N., He J., Yang Z., Tu Z., Zhao F., Wang K., Yi Y., Huang C., Carbon, 2020, 162, 579 [23] Torres-Pinto A., Silva C. G., Faria J. L., Silva A. M. T., Adv. Sci., 2021, 8, 2003900 [24] Yang C., Li Y., Chen Y., Li Q., Wu L., Cui X., Small, 2019, 15, 1804710 [25] Gao J., Li J., Chen Y., Zuo Z., Li Y., Liu H., Li Y., Nano Energy, 2018, 43, 192 [26] Kong Y., Li J., Zeng S., Yin C., Tong L., Zhang J., Chem, 2020, 6, 1933 [27] Malko D., Neiss C., Vines F., Gorling A., Phys. Rev. Lett., 2012, 108, 086804 [28] Li Y., He J., Shen H., Chem. Eur. J., 2020, 26, 12310 [29] Long M., Tang L., Wang D., Li Y., Shuai Z., ACS Nano, 2011, 5, 2593 [30] Luo G., Qian X., Liu H., Qin R., Zhou J., Li L., Gao Z., Wang E., Mei W.-N., Lu J., Phys. Rev. B, 2011, 84, 075439 [31] Jiao Y., Du A., Hankel M., Zhu Z., Rudolph V., Smith S. C., Chem. Commun., 2011, 47, 11843 [32] Zuo Z., Wang D., Zhang J., Lu F., Li Y., Adv. Mater., 2019, 31, e1803762 [33] Zhou W., Shen H., Wu C., Tu Z., He F., Gu Y., Xue Y., Zhao Y., Yi Y., Li Y., J. Am. Chem. Soc., 2019, 141, 48 [34] Zhang Z., Wu C., Pan Q., Shao F., Sun Q., Chen S., Li Z., Zhao Y., Chem. Commun., 2020, 56, 3210 [35] Li J., Slassi A., Han X., Cornil D., Ha-Thi M. H., Pino T., Debecker D. P., Colbeau-Justin C., Arbiol J., Cornil J., Adv. Funct. Mater., 2021, 31, 2100994 [36] Ma Y., Wang X., Jia Y., Chen X., Han H., Li C., Chem. Rev., 2014, 114, 9987 [37] Li X. B., Liu B., Wen M., Gao Y. J., Wu H. L., Huang M. Y., Li Z. J., Chen B., Tung C. H., Wu L. Z., Adv. Sci., 2016, 3, 1500282 [38] Jiang W., Zhang Z., Wang Q., Dou J., Zhao Y., Ma Y., Liu H., Xu H., Wang Y., Nano Lett., 2019, 19, 4060 [39] Wang S., Yi L., Halpert J. E., Lai X., Liu Y., Cao H., Yu R., Wang D., Li Y., Small, 2012, 8, 265 [40] Yang N., Liu Y., Wen H., Tang Z., Zhao H., Li Y., Wang D., ACS Nano, 2013, 7, 1504 [41] Li J., Xie Z., Xiong Y., Li Z., Huang Q., Zhang S., Zhou J., Liu R., Gao X., Chen C., Adv. Mater., 2017, 29, 1700421 [42] Dong Y., Zhao Y., Chen Y., Feng Y., Zhu M., Ju C., Zhang B., Liu H., Xu J., J. Mater. Sci., 2018, 53, 8921 [43] Xiang Y., Liu J. J., Yu X. L., Zhu F., Li Y. J., Li J. B., J. Nanopart. Res., 2020, 22, 365 [44] Chen T., Li W. Q., Chen X. J., Guo Y. Z., Hu W. B., Hu W. J., Liu Y. A., Yang H., Wen K., Chem. Eur. J., 2020, 26, 2269 [45] Wang L., Wan Y., Ding Y., Wu S., Zhang Y., Zhang X., Zhang G., Xiong Y., Wu X., Yang J., Adv. Mater., 2017, 29, 1702428 [46] Si H.-Y., Mao C.-J., Zhou J.-Y., Rong X.-F., Deng Q.-X., Chen S.-L., Zhao J.-J., Sun X.-G., Shen Y. M., Feng W.-J., Carbon, 2018, 132, 598 [47] Wu L., Li Q., Yang C., Ma X., Zhang Z., Cui X., J. Mater. Chem. A, 2018, 6, 20947 [48] Lv J. X., Zhang Z. M., Wang J.; Lu X. L., Zhang W., Lu T. B., ACS Appl. Mater. Interfaces, 2019, 11, 2655 [49] Xu Q., Zhu B., Cheng B., Yu J., Zhou M., Ho W., Appl. Catal. B Environ., 2019, 255, 117770 [50] Li Y., Yang H., Wang G., Ma B., Jin Z., ChemCatChem, 2020, 12, 1985 [51] Guo S., Jiang Y., Wu F., Yu P., Liu H., Li Y., Mao L., ACS Appl. Mater. Interfaces, 2019, 11, 2684 [52] Wang Y., Zhang Y., Wang Y. M., Zeng C. X., Sun M., Yang D. Y., Cao K., Pan H. Z., Wu Y. Z., Liu H., Yang R. S., ACS Appl. Mater. Interfaces, 2021, 13, 40629 [53] Su K., Dong G. X., Zhang W., Liu Z. L., Zhang M., Lu T. B., ACS Appl Mater Interfaces, 2020, 12, 50464 [54] Xu F., Meng K., Zhu B., Liu H., Xu J., Yu J., Adv. Funct. Mater., 2019, 29, 1904256 [55] Fang Y., Xue Y., Hui L., Yu H., Li Y., Angew. Chem. Int. Ed., 2021, 60, 3170 [56] Pan Q., Liu H., Zhao Y., Chen S., Xue B., Kan X., Huang X., Liu J., Li Z., ACS Appl. Mater. Interfaces, 2019, 11, 2740 [57] Men X., Wu Y., Chen H., Fang X., Sun H., Yin S., Qin W., J. Alloys Compd., 2017, 703, 251 [58] Zhang L.-W., Fu H.-B.; Zhu Y.-F., Adv. Funct. Mater., 2008, 18, 2180 [59] Zhao C., Chen Z., Shi R., Yang X., Zhang T., Adv. Mater., 2020, 32, 1907296 [60] Qin S., Lei Y., Guo J., Huang J. F., Hou C. P., Liu J. M., ACS Appl. Mater. Interfaces, 2021, 13, 25960 [61] Wang S., Zhang J., Li B., Sun H., Wang S., Energy Fuels, 2021, 35, 6504 [62] Li X., Wang M., Zhang S., Pan J., Na Y., Liu J., Åkermark B., Sun L., J. Phys. Chem. B, 2008, 112, 8198 [63] Duan L., Araujo C. M., Ahlquist M. S., Sun L., Proc. Natl. Acad. Sci. USA, 2012, 109, 15584 [64] Chen J., Wu X. J., Yin L., Li B., Hong X., Fan Z., Chen B., Xue C., Zhang H., Angew. Chem. Int. Ed., 2015, 54, 1210 [65] Tan P., Liu Y., Zhu A., Zeng W., Cui H., Pan J., ACS Sustainable Chem. Eng., 2018, 6, 10385 [66] Li X., Yu J., Jaroniec M., Chen X., Chem. Rev., 2019, 119, 3962 [67] Montoya J. H., Seitz L. C., Chakthranont P., Vojvodic A., Jaramillo T. F., Norskov J. K., Nat. Mater., 2016, 16, 70 [68] Voiry D., Shin H. S., Loh K. P., Chhowalla M., Nat. Rev. Chem., 2018, 2, 0105 [69] Nenon D. P., Pressler K., Kang J., Koscher B. A., Olshansky J. H., Osowiecki W. T., Koc M. A., Wang L. W., Alivisatos A. P., J. Am. Chem. Soc., 2018, 140, 17760 [70] Akkerman Q. A., D'Innocenzo V., Accornero S., Scarpellini A., Petrozza A., Prato M., Manna L., J. Am. Chem. Soc., 2015, 137, 10276 [71] Kumar A., Kumar A., Krishnan V., ACS Catal., 2020, 10, 10253 [72] Cao S., Wang Y., Zhu B., Xie G., Yu J., Gong J. R., J. Mater. Chem. A, 2020, 8, 7671 [73] Chen L. W., Hao Y. C., Guo Y., Zhang Q., Li J., Gao W. Y., Ren L., Su X., Hu L., Zhang N., J. Am. Chem. Soc., 2021, 143, 5727 [74] Hao Y.-C., Guo Y., Chen L.-W., Shu M., Wang X.-Y., Bu T.-A., Gao W.-Y., Zhang N., Su X., Feng X., Nat. Catal., 2019, 2, 448 [75] Wang X., Saba T., Yiu H. H. P., Howe R. F., Anderson J. A., Shi J., Chem, 2017, 2, 621 [76] Liu J., Huang J., Zhou H., Antonietti M., ACS Appl. Mater. Interfaces, 2014, 6, 8434 [77] Grätzel M., Nature, 2001, 414, 338 [78] Walter M. G., Warren E. L., McKone J. R., Boettcher S. W., Mi Q., Santori E. A., Lewis N. S., Chem. Rev., 2010, 110, 6446 [79] Wu H. L., Li X. B., Tung C. H., Wu L. Z., Adv. Sci., 2018, 5, 1700684 [80] Li J., Gao X., Liu B., Feng Q., Li X. B., Huang M. Y., Liu Z., Zhang J., Tung C. H., Wu L. Z., J. Am. Chem. Soc., 2016, 138, 3954 [81] Du Y., Xue Y., Zhang C., Liu Y., Fang Y., Xing C., He F., Li Y., Adv. Energy Mater., 2021, 11, 2100234 [82] Ong W. J., Tan L. L., Ng Y. H., Yong S. T., Chai S. P., Chem. Rev., 2016, 116, 7159 [83] Han Y.-Y., Lu X.-L., Tang S.-F., Yin X.-P., Wei Z.-W., Lu T.-B., Adv. Energy Mater., 2018, 8, 1702992 [84] Zhang T., Hou Y., Dzhagan V., Liao Z., Chai G., Loffler M., Olianas D., Milani A., Xu S., Tommasini M., Nat. Commun., 2018, 9, 1140 [85] Voiry D., Yang J., Chhowalla M., Adv. Mater., 2016, 28, 6197 [86] Yu H., Xue Y., Hui L., Zhang C., Li Y., Zuo Z., Zhao Y., Li Z., Li Y., Adv. Mater., 2018, 30, 1707082 [87] Gao X., Li J., Du R., Zhou J., Huang M. Y., Liu R., Li J., Xie Z., Wu L. Z., Liu Z., Adv. Mater., 2017, 29, 1605308 [88] Liu B., Li J., Wu H. L., Liu W. Q., Jiang X., Li Z. J., Chen B., Tung C. H., Wu L. Z., ACS Appl. Mater. Interfaces, 2016, 8, 18577 [89] Li P., Chen X., He H., Zhou X., Zhou Y., Zou Z., Adv. Mater., 2018, 30, 1703119 [90] Xing C., Huang W., Xie Z., Zhao J., Ma D., Fan T., Liang W., Ge Y., Dong B., Li J., ACS Photonics, 2017, 5, 621 [91] Chen J., Zhou Y., Fu Y., Pan J., Mohammed O. F., Bakr O. M., Chem. Rev., 2021, DOI:10.1021/acs.chemrev.1c00181/10.1021/acs.chemrev.1c00181 [92] Jin Z., Zhou Q., Chen Y., Mao P., Li H., Liu H., Wang J., Li Y., Adv. Mater., 2016, 28, 3697 [93] Li Y., Zhang M., Hu X., Li X., Li R., Yu L., Fan X., Wang N., Huang C., Li Y., Adv. Opt. Mater., 2021, 9, 2001916 [94] Hagfeldt A., Boschloo G., Sun L., Kloo L., Pettersson H., Chem. Rev., 2010, 110, 6595 [95] Cole J. M., Pepe G., Al Bahri O. K., Cooper C. B., Chem. Rev., 2019, 119, 7279 [96] Ren H., Shao H., Zhang L., Guo D., Jin Q., Yu R., Wang L., Li Y., Wang Y., Zhao H., Adv. Energy Mater., 2015, 5, 1500296 [97] Chen H., Xiang S., Li W., Liu H., Zhu L., Solar RRL., 2018, 2, 1700188 [98] Xiao J., Shi J., Liu H., Xu Y., Lv S., Luo Y., Li D., Meng Q., Li Y., Adv. Energy Mater., 2015, 5, 1401943 [99] Kuang C., Tang G., Jiu T., Yang H., Liu H., Li B., Luo W., Li X., Zhang W., Lu F., Nano Lett., 2015, 15, 2756 |
[1] | SONG Weiyu, LV Xintong, GAO Yang, WANG Lu. Photocatalytic HER Performance of TiO2-supported Single Atom Catalyst Based on Electronic Regulation:A DFT Study [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1025-1031. |
[2] | DU Shihao, BIAN Xuanang, ZHAO Yunxuan, SHI Run, and ZHANG Tierui. Progress and Prospect of Photothermal Catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(3): 723-734. |
[3] | LIU Shujing, GUO Jia. Two-dimensional Covalent Organic Frameworks: Intrinsic Synergy Promoting Photocatalytic Hydrogen Evolution [J]. Chemical Research in Chinese Universities, 2022, 38(2): 373-381. |
[4] | LAN Weifei, HU Ruifeng, HUANG Danrong, DONG Xu, SHEN Gangyi, CHANG Shan, DAI Dongsheng. Palladium Nanoparticles/Graphdiyne Oxide Nanocomposite with Excellent Peroxidase-like Activity and Its Application for Glutathione Detection [J]. Chemical Research in Chinese Universities, 2022, 38(2): 529-534. |
[5] | ZHENG Zhiqiang, HE Feng, XUE Yurui, LI Yuliang. Loading Nickel Atoms on GDY for Efficient CO2 Fixation and Conversion [J]. Chemical Research in Chinese Universities, 2022, 38(1): 92-98. |
[6] | LI Xiaodan, GUO Mengyu, CHEN Chunying. Graphdiyne: from Preparation to Biomedical Applications [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1176-1194. |
[7] | MAN Yixiao, ZHAO Jinyu, LIU Shipeng, PAN Qingyan, ZHAO Yingjie. Heteroatom Doped Graphdiyne and Analogues: Synthesis, Structures and Applications [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1213-1223. |
[8] | SONG Congying, LI Guoxing. Graphdiyne: A Versatile Material in Electrochemical Energy Conversion and Storage [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1224-1241. |
[9] | WONG Hon Ho, SUN Mingzi, HUANG Bolong. Synergistic Effect of Graphdiyne-based Electrocatalysts [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1242-1256. |
[10] | LI Ru, ZHANG Mingjia, LI Xiaodong, MA Xiaodi, HUANG Changshui. Study of Graphdiyne-based Magnetic Materials [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1257-1267. |
[11] | LI Liang, ZUO Zicheng, HE Feng, JIANG Zhongqing, LI Yuliang. Nitrogen-rich Graphdiyne Film for Efficiently Suppressing the Methanol Crossover in Direct Methanol Fuel Cells [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1275-1282. |
[12] | LI Meiping, WANG Kaihang, LV Qing. N,P-co-Doped Graphdiyne as Efficient Metal-free Catalysts for Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1283-1288. |
[13] | ZHANG Luwei, LIU Jingyi, BAI Ling, WANG Ning. Diffusion Kinetics Study of Lithium Ion in the Graphdiyne Based Electrode [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1289-1295. |
[14] | LI Jiaofu, CHEN Yanhuan, WANG Fuhui, GUO Jie, HE Feng, LIU Huibiao. Graphdiyne Hybrid Nanowall Arrays for High-capacity Aqueous Rechargeable Zinc Ion Battery [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1301-1308. |
[15] | TANG Jin, ZHAO Min, CAI Xu, LIU Le, LI Xiaofang, JIU Tonggang. Graphdiyne Oxide Modified NiOx for Enhanced Charge Extraction in Inverted Planar MAPbI3 Perovskite Solar Cells [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1309-1316. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||