Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3): 688-697.doi: 10.1007/s40242-022-2045-6
• Reviews • Previous Articles Next Articles
JI Yuancheng1, XU Jiayun2, SUN Hongcheng2, and LIU Junqiu1,2
Received:2022-02-07
Revised:2022-04-05
Online:2022-06-01
Published:2022-05-26
Contact:
SUN Hongcheng, LIU Junqiu
E-mail:sunhc@hznu.edu.cn;junqiuliu@jlu.edu.cn
Supported by:JI Yuancheng, XU Jiayun, SUN Hongcheng, and LIU Junqiu. Artificial Photosynthesis(AP): from Molecular Catalysts to Heterogeneous Materials[J]. Chemical Research in Chinese Universities, 2022, 38(3): 688-697.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
| [1] Dau H., Fujita E., Sun L., Chemsuschem, 2017, 10, 4228 [2] Kärkäs M. D., Verho O., Johnston E. V.,Åkermark B., Chem. Rev., 2014, 114, 11863 [3] Haegel N. M., Atwater H., Barnes T., Breyer C., Burrell A., Chiang Y.-M., Wolf S. D., Dimmler B., Feldman D., Glunz S., Goldschmidt J. C., Hochschild D., Inzunza R., Kaizuka I., Kroposki B., Kurtz S., Leu S., Margolis R., Matsubara K., Metz A., Metzger W. K., Morjaria M., Niki S., Nowak S., Peters I. M., Philipps S., Reindl T., Richter A., Rose D., Sakurai K., Schlatmann R., Shikano M., Sinke W., Sinton R., Stanbery B. J., Topic M., Tumas W., Ueda Y., van de Lagemaat J., Verlinden P., Vetter M., Warren E., Werner M., Yamaguchi M., Bett A. W., Science, 2019, 364, 836 [4] Barber J., Chem. Soc. Rev., 2008, 38, 185 [5] Itoh H., Takahashi A., Adachi K., Noji H., Yasuda R., Yoshida M., Kinosita K., Nature, 2004, 427, 465 [6] Sun H., Zhang X., Miao L., Zhao L., Luo Q., Xu J., Liu J., ACS Nano.,2016, 10, 421 [7] Proppe A. H., Li Y. C., Aspuru-Guzik A., Berlinguette C. P., Chang C. J., Cogdell R., Doyle A. G., Flick J., Gabor N. M., van Grondelle R., Hammes-Schiffer S., Jaffer S. A., Kelley S. O., Leclerc M., Leo K., Mallouk T. E., Narang P., Schlau-Cohen G. S., Scholes G. D., Vojvodic A., Yam V. W.-W., Yang J. Y., Sargent E. H., Nat. Rev. Mater., 2020, 5, 828 [8] Zhu X.-G., Long S. P., Ort D. R., Plant Biology, 2010, 61, 235 [9] Umena Y., Kawakami K., Shen J.-R., Kamiya N., Nature, 2011, 473, 55 [10] Shen J.-R., Annu. Rev. Plant Biol., 2012, 66, 1 [11] Blakemore J. D., Crabtree R. H., Brudvig G. W., Chem. Rev., 2015, 115, 12974 [12] Suga M., Akita F., Hirata K., Ueno G., Murakami H., Nakajima Y., Shimizu T., Yamashita K., Yamamoto M., Ago H., Shen J.-R., Nature, 2015, 517, 99 [13] Lohmiller T., Krewald V., Sedoud A., Rutherford A. W., Neese F., Lubitz W., Pantazis D. A., Cox N., J. Am. Chem. Soc., 2017, 139, 14412 [14] Vinyard D. J., Khan S., Brudvig G. W., Faraday Discuss, 2015, 185, 37 [15] Barber J., Nat. Plants, 2017, 3, 17041 [16] Garrido-Barros P., Gimbert-Suriñach C., Matheu R., Sala X., Llobet A., Chem. Soc. Rev., 2017, 46, 6088 [17] Hessels J., Detz R. J., Koper M. T. M., Reek J. N. H., Chem-European J., 2017, 23, 16413 [18] Romain S., Vigara L., Llobet A., Accounts Chem. Res., 2009, 42, 1944 [19] Duan L., Tong L., Xu Y., Sun L., Energ. Environ. Sci., 2011, 4, 3296 [20] Javier J. C., Jonah W. J., Kyle B. M., Paul G. H., Antonio Otavio T. P., Yukie M. I. N., Joseph L. T., Thomas J. M., Accounts Chem. Res., 2009, 42, 1954 [21] Gersten S. W., Samuels G. J., Meyer T. J., J. Am. Chem. Soc., 1982, 104, 4029 [22] Gilbert J. A., Eggleston D. S., Murphy W. R., Geselowitz D. A., Gersten S. W., Hodgson D. J., Meyer T. J., J. Am. Chem. Soc., 1985, 107, 3855 [23] Moonshiram D., Jurss J. W., Concepcion J. J., Zakharova T., Alperovich I., Meyer T. J., Pushkar Y., J. Am. Chem. Soc., 2012, 134, 4625 [24] Yamada H., Hurst J. K., J. Am. Chem. Soc., 2000, 122, 5303 [25] Liu F., Concepcion J. J., Jurss J. W., Cardolaccia T., Templeton J. L., Meyer T. J., Inorg. Chem., 2008, 47, 1727 [26] Moyer B. A., Meyer T. J., J. Am. Chem. Soc., 1978, 100, 3601 [27] Zong R., Thummel R. P., J. Am. Chem. Soc., 2005, 127, 12802 [28] Duan L., Fischer A., Xu Y., Sun L., J. Am. Chem. Soc., 2009, 131, 10397 [29] Wang L., Duan L., Stewart B., Pu M., Liu J., Privalov T., Sun L., J. Am. Chem. Soc., 2012, 134, 18868 [30] Duan L., Bozoglian F., Mandal S., Stewart B., Privalov T., Llobet A., Sun L., Nat. Chem., 2012, 4, 418 [31] Arnold P. L., Pearson S.,Coordin. Chem. Rev., 2007, 251, 596 [32] Albrecht M., Chem. Commun., 2008, 0, 3601 [33] Schuster O., Yang L., Raubenheimer H. G., Albrecht M., Chem. Rev., 2009, 109, 3445 [34] Lalrempuia R., McDaniel N. D., Müller-Bunz H., Bernhard S., Albrecht M., Angewandte Chemie Int. Ed, 2010, 49, 9765 [35] Seitz L. C., Dickens C. F., Nishio K., Hikita Y., Montoya J., Doyle A., Kirk C., Vojvodic A., Hwang H. Y., Norskov J. K., Jaramillo T. F., Science, 2016, 353, 1011 [36] Pi Y., Shao Q., Wang P., Guo J., Huang X., Adv. Funct. Mater., 2017, 27, 1700886 [37] Lin Y., Tian Z., Zhang L., Ma J., Jiang Z., Deibert B. J., Ge R., Chen L., Nat. Commun., 2019, 10, 162 [38] Yao Y., Hu S., Chen W., Huang Z.-Q., Wei W., Yao T., Liu R., Zang K., Wang X., Wu G., Yuan W., Yuan T., Zhu B., Liu W., Li Z., He D., Xue Z., Wang Y., Zheng X., Dong J., Chang C.-R., Chen Y., Hong X., Luo J., Wei S., Li W.-X., Strasser P., Wu Y., Li Y., Nat. Catal., 2019, 2, 304 [39] Fischer W. W., Hemp J., Johnson J. E., Origins Life Evol. B, 2015, 45, 351 [40] Zhang C., Chen C., Dong H., Shen J.-R., Dau H., Zhao J., Science, 2015, 348, 690 [41] Wickramaslnghe L. D., Zhou R., Zong R., Vo P., Gagnon K. J., Thummel R. P., J. Am. Chem. Soc., 2015, 137, 13260 [42] Nelson N., Ben-Shem A., Nat. Rev. Mol. Cell Bio., 2004, 5, 971 [43] Andersson I., J. Exp. Bot., 2008, 59, 1555 [44] Esper B., Badura A., Rögner M., Trends Plant Sci., 2006, 11, 543 [45] Benemann J. R., Berenson J. A., Kaplan N. O., Kamen M. D., Proc. National Acad. Sci., 1973, 70, 2317 [46] Wang F., Chemsuschem, 4393, 10, 4393 [47] Fujita E., Coordin. Chem. Rev., 1999, 185, 373 [48] Chen L., Chen G., Leung C.-F., Cometto C., Robert M., Lau T.-C., Chem. Soc. Rev., 2020, 49, 7271 [49] Esswein A. J., Nocera D. G., Chem. Rev., 2007, 107, 4022 [50] Dempsey J. L., Winkler J. R., Gray H. B., J. Am. Chem. Soc., 2010, 132, 16774 [51] Meshitsuka S., Ichikawa M., Tamaru K., J. Chem. Soc. Chem. Commun., 1974, 158 [52] Berardi S., Drouet S., Francàs L., Gimbert-Suriñach C., Guttentag M., Richmond C., Stoll T., Llobet A., Chem. Soc. Rev., 2014, 43, 7501 [53] Nicolet Y., Piras C., Legrand P., Hatchikian C. E., Fontecilla-Camps J. C., Structure, 1999, 7, 13 [54] Peters J. W., Lanzilotta W. N., Lemon B. J., Seefeldt L. C., Science, 1998, 282, 1853 [55] Gloaguen F., Lawrence J. D., Rauchfuss T. B., J. Am. Chem. Soc., 2001, 123, 9476 [56] Barton B. E., Whaley C. M., Rauchfuss T. B., Gray D. L., J. Am. Chem. Soc., 2009, 131, 6942 [57] Barton B. E., Rauchfuss T. B., J. Am. Chem. Soc., 2010, 132, 14877 [58] Eckenhoff W. T., Coordin. Chem. Rev., 2018, 373, 295 [59] Brown G. M., Brunschwig B. S., Creutz C., Endicott J. F., Sutin N., J. Am. Chem. Soc., 1979, 101, 1298 [60] McCormick T. M., Han Z., Weinberg D. J., Brennessel W. W., Holland P. L., Eisenberg R., Inorg. Chem., 2011, 50, 10660 [61] Probst B., Guttentag M., Rodenberg A., Hamm P., Alberto R., Inorg. Chem., 2011, 50, 3404 [62] Du P., Schneider J., Luo G., Brennessel W. W., Eisenberg R., Inorg. Chem., 2009, 48, 4952 [63] Zhang P., Wang M., Dong J., Li X., Wang F., Wu L., Sun L., J. Phys. Chem. C, 2010, 114, 15868 [64] Kuramochi Y., Ishitani O., Ishida H.,Coordin. Chem. Rev., 2018, 373, 333 [65] Hawecker J., Lehn J., Ziessel R., Helv. Chim. Acta, 1986, 69, 1990 [66] Hawecker J., Lehn J.-M., Ziessel R.,J. Chem. Soc. Chem. Commun., 1983, 536 [67] Sullivan B. P., Bolinger C. M., Conrad D., Vining W. J., Meyer T. J., J. Chem. Soc. Chem. Commun., 1985, 1414 [68] Smieja J. M., Kubiak C. P., Inorg. Chem., 2010, 49, 9283 [69] Takeda H., Koike K., Inoue H., Ishitani O., J. Am. Chem. Soc., 2008, 130, 2023 [70] Bourrez M., Molton F., Chardon-Noblat S., Deronzier A., Angewandte Chemie Int. Ed., 2011, 50, 9903 [71] Rao H., Schmidt L. C., Bonin J., Robert M., Nature, 2017, 548, 74 [72] Bhugun I., Lexa D., Savéant J.-M., J. Am. Chem. Soc., 1996, 118, 1769 [73] Costentin C., Drouet S., Passard G., Robert M., Savéant J.-M., J. Am. Chem. Soc., 2013, 135, 9023 [74] Hammouche M., Lexa D., Momenteau M., Saveant J. M., J. Am. Chem. Soc., 1991, 113, 8455 [75] Costentin C., Drouet S., Robert M., Savéant J.-M., Science, 2012, 338, 90 [76] Azcarate I., Costentin C., Robert M., Savéant J.-M., J. Am. Chem. Soc., 2016, 138, 16639 [77] Dalle K. E., Warnan J., Leung J. J., Reuillard B., Karmel I. S., Reisner E., Chem. Rev., 2019, 119, 2752 [78] Xiang Q., Cheng B., Yu J., Angewandte Chemie Int. Ed., 2015, 54, 11350 [79] Cadranel A., Margraf J. T., Strauss V., Clark T., Guldi D. M., Accounts Chem. Res., 2019, 52, 955 [80] Vyas V. S., Lau V. W., Lotsch B. V., Chem. Mater., 2016, 28, 5191 [81] Fang Y., Wang X., Chem. Commun., 2018, 54, 5674 [82] Wei Y., Chen L., Chen H., Cai L., Tan G., Qiu Y., Xiang Q., Chen G., Lau T., Robert M., Angewandte Chemie Int. Ed., 2022, e202116832 [83] Tachibana Y., Vayssieres L., Durrant J. R.,Nat. Photonics, 2012, 6, 511 [84] Ozaki K., Tajika E., Hong P. K., Nakagawa Y., Reinhard C. T., Nat. Geosci., 2018, 11, 55 [85] Sala X., Maji S., Bofill R., García-Antón J., Escriche L., Llobet A., Accounts Chem. Res., 2014, 47, 504 [86] Gil-Sepulcre M., Lindner J. O., Schindler D., Velasco L., Moonshiram D., Rüdiger O., DeBeer S., Stepanenko V., Solano E., Würthner F., Llobet A., J. Am. Chem. Soc., 2021, 143, 11651 [87] Perazio A., Lowe G., Gobetto R., Bonin J., Robert M., Coordin. Chem. Rev., 2021, 443, 214018 [88] Arcudi F.,Đorđević L., Nagasing B., Stupp S. I., Weiss E. A.,J. Am. Chem. Soc., 2021, 143, 18131 [89] Zhao L., Zou H., Zhang H., Sun H., Wang T., Pan T., Li X., Bai Y., Qiao S., Luo Q., Xu J., Hou C., Liu J., ACS Nano., 2017, 11, 938 [90] Li X., Qiao S., Zhao L., Liu S., Li F., Yang F., Luo Q., Hou C., Xu J., Liu J., ACS Nano., 2019, 13, 1861 [91] Hu J.-C., Sun S., Li M.-D., Xia W., Wu J., Liu H., Wang F.,Chem. Commun., 2019,55, 14490 |
| [1] | XU Guangyuan, LIU Qin, YAN Huan. Recent Advances of Single-atom Catalysts for Electro-catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1146-1150. |
| [2] | QI Yuxue, LI Tingting, HU Yajie, XIANG Jiahong, SHAO Wenqian, CHEN Wenhua, MU Xueqin, LIU Suli, CHEN Changyun, YU Min, MU Shichun. Single-atom Fe Embedded Co3S4 for Efficient Electrocatalytic Oxygen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1282-1286. |
| [3] | HAO Zhimin, LIU Dapeng, GE Huaiyun, ZUO Xintao, FENG Xilan, SHAO Mingzhe, YU Haohan, YUAN Guobao, and ZHANG Yu. Preparation of Quaternary FeCoMoCu Metal Oxides for Oxygen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(3): 823-828. |
| [4] | XU Jing, MIAO Sijia, TANG Duihai, ZHANG Wenting, ZHAO Zhen, QIAO Zhen-An. Molten Salts Strategy for the Synthesis of CoP Nanoparticles Entrapped, N,P co-Doped Mesoporous Carbons as Electrocatalysts for Hydrogen Evolution [J]. Chemical Research in Chinese Universities, 2022, 38(1): 237-242. |
| [5] | LUAN Xiaoyu, XUE Yurui. Nickel(hydro) oxide/graphdiyne Catalysts for Efficient Oxygen Production Reaction [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1268-1274. |
| [6] | LEI Jia, ZENG Mengqi, FU Lei. Two-dimensional Metal-Organic Frameworks as Electrocatalysts for Oxygen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2020, 36(4): 504-510. |
| [7] | SHI Yi, DAI Wenrui, WANG Meng, XING Yongfang, XIA Xinghua, CHEN Wei. Bioinspired Construction of Ruthenium-decorated Nitrogen-doped Graphene Aerogel as an Efficient Electrocatalyst for Hydrogen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2020, 36(4): 709-714. |
| [8] | YAN Baolin, LIU Dapeng, FENG Xilan, SHAO Mingzhe, ZHANG Yu. Ru Nanoparticles Supported on Co-Embedded N-Doped Carbon Nanotubes as Efficient Electrocatalysts for Hydrogen Evolution in Basic Media [J]. Chemical Research in Chinese Universities, 2020, 36(3): 425-430. |
| [9] | JI Xiulei, JIANG Heng. A Perspective: the Technical Barriers of Zn Metal Batteries [J]. Chemical Research in Chinese Universities, 2020, 36(1): 55-60. |
| [10] | JIAN Juan, YUAN Long, LI He, LIU Huanhuan, ZHANG Xinghui, SUN Xuejiao, YUAN Hongming, FENG Shouhua. Hydrothermal Synthesized Co-Ni3S2 Ultrathin Nanosheets for Efficient and Enhanced Overall Water Splitting [J]. Chemical Research in Chinese Universities, 2019, 35(2): 179-185. |
| [11] | ZHANG Xuena, ZHONG Xinwen, YANG Zhe, SONG Jiapeng, LU Haiyan. Carbon-covered Tungsten Carbide Nanoparticles: Solid-state Synthesis and Application as Stable Electrocatalysts for the Hydrogen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2016, 32(6): 1016-1018. |
| [12] | YU Jin-yu, QIAN Zhao-hong, ZHAO Meng, WANG Yu-jie, NIU Lin. Effects of Sodium Sulfate as Electrolyte Additive on Electrochemical Performance of Lead Electrode [J]. Chemical Research in Chinese Universities, 2013, 29(2): 374-378. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

