Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6): 1309-1323.doi: 10.1007/s40242-022-2250-3
• Reviews • Previous Articles Next Articles
LIN Tian1,2, WANG Haowu2,3, CUI Chengqian2,3, LIU Wei1, LI Guodong2,3
Received:
2022-07-22
Online:
2022-12-01
Published:
2022-12-06
Contact:
LI Guodong, LIU Wei
E-mail:liguodong@nanoctr.cn;weiliu@ucas.ac.cn
Supported by:
LIN Tian, WANG Haowu, CUI Chengqian, LIU Wei, LI Guodong. Recent Advances on Confining Noble Metal Nanoparticles Inside Metal-Organic Frameworks for Hydrogenation Reactions[J]. Chemical Research in Chinese Universities, 2022, 38(6): 1309-1323.
[1] Zhong J. W., Yang X. F., Wu Z. L., Liang B. L., Huang Y. Q., Zhang T., Chem. Soc. Rev., 2020, 49, 1385; [2] Modak A., Bhanja P., Dutta S., Chowdhury B., Bhaumik A., Green Chem., 2020, 22, 4002; [3] Fang R. Q., Dhakshinamoorthy A., Li Y. W., Garcia H., Chem. Soc. Rev., 2020, 49, 3638; [4] Hou Q. Q., Qi X. H., Zhen M. N., Qian H. L., Nie Y. F., Bai C. Y. L., Zhang S. Q., Bai X. Y., Ju M. T., Green Chem., 2021, 23, 119; [5] Lan X. C., Wang T. F., ACS Catal., 2020, 10, 2764; [6] Jiang X., Nie X. W., Guo X. W., Song C. S., Chen J. G., Chem. Rev., 2020, 120, 7984; [7] Etayo P., Vidal-Ferran A., Chem. Soc. Rev., 2013, 42, 728; [8] Long J. L., Shen K., Li Y. W., ACS Catal., 2017, 7, 275; [9] Abdine R. A. A., Hedouin G., Colobert F., Wencel-Delord J., ACS Catal., 2021, 11, 215; [10] Lang R., Du X. R., Huang Y. K., Jiang X. Z., Zhang Q., Guo Y. L., Liu K. P., Qiao B. T., Wang A. Q., Zhang T., Chem. Rev., 2020, 120, 11986; [11] He C., Liang J., Zou Y. H., Yi J. D., Huang Y. B., Cao R., Natl. Sci. Rev., 2021, 9, nwab157; [12] Habib N. R., Asedegbega-Nieto E., Taddesse A. M., Diaz I., Dalton Trans., 2021, 50, 10340; [13] Zhu Y. F., Qiu X. Y., Zhao S. L., Guo J., Zhang X. F., Zhao W. S., Shi Y. N., Tang Z. Y., Nano Res., 2020, 13, 1928; [14] Hou C., Zhao G. F., Ji Y. J., Niu Z. Q., Wang D. S., Li Y. D., Nano Res., 2014, 7, 1364; [15] Li G. D., Tang Z. Y., Nanoscale, 2014, 6, 3995; [16] Xing L. W., Jin Y. J., Weng Y. X., Ji Y. J., Front. Chem., 2021, 9, 810147; [17] Li Y., Yu J. H., Nat. Rev. Mater., 2021, 6, 1156; [18] Sadakiyo M., Nanoscale, 2022, 14, 3398; [19] Gao C. B., Lyu F. L., Yin Y. D., Chem. Rev., 2021, 121, 834; [20] Liu L. C., Corma A., Chem. Rev., 2018, 118, 4981; [21] Li Z. X., Hu M. L., Liu J. H., Wang W. W., Li Y. J., Fan W. B., Gong Y. X., Yao J. S., Wang P., He M., Li Y. L., Nano Res., 2022, 15, 1983; [22] Bavykina A., Kolobov N., Khan I. S., Bau J. A., Ramirez A., Gascon J., Chem. Rev., 2020, 120, 8468; [23] Hannagan R. T., Giannakakis G., Flytzani-Stephanopoulos M., Sykes E. C. H., Chem. Rev., 2020, 120, 12044; [24] Hou C. C., Wang H. F., Li C. X., Xu Q., Energy Environ. Sci., 2020, 13, 1658; [25] Xia C., Qiu Y. R., Xia Y., Zhu P., King G., Zhang X., Wu Z. Y., Kim J. Y., Cullen D. A., Zheng D. X., Li P., Shakouri M., Heredia E., Cui P. X., Alshareef H. N., Hu Y. F., Wang H. T., Nat. Chem., 2021, 13, 887; [26] Zhang T. J., Walsh A. G., Yu J. H., Zhang P., Chem. Soc. Rev., 2021, 50, 569; [27] Zhang F. F., Zhu Y. L., Lin Q., Zhang L., Zhang X. W., Wang H. T., Energy Environ. Sci., 2021, 14, 2954; [28] Han B., Li T. B., Zhang J. Y., Zeng C. B., Matsumoto H., Su Y., Qiao B. T., Zhang T., Chem. Commun., 2020, 56, 4870; [29] Bond G. C., Surface Science, 1985, 156, 966; [30] He C., Wu Q. J., Mao M. J., Zou Y. H., Liu B. T., Huang Y. B., Cao R., CCS Chem., 2021, 3, 2368; [31] Furukawa H., Cordova Kyle E., O'Keeffe M., Yaghi Omar M., Science, 2013, 341, 1230444; [32] Kitagawa S., Chem. Soc. Rev., 2014, 43, 5415; [33] Long J. R., Yaghi O. M., Chem. Soc. Rev., 2009, 38, 1213; [34] Yaghi O. M., O'Keeffe M., Ockwig N. W., Chae H. K., Eddaoudi M., Kim J., Nature, 2003, 423, 705; [35] Zhou H. C., Long J. R., Yaghi O. M., Chem. Rev., 2012, 112, 673; [36] Furukawa H., Ko N., Go Y. B., Aratani N., Choi S. B., Choi E., Yazaydin A. O., Snurr R. Q., O'Keeffe M., Kim J., Yaghi O. M., Science, 2010, 329, 424; [37] Shimizu G. K. H., Vaidhyanathan R., Taylor J. M., Chem. Soc. Rev., 2009, 38, 1430; [38] Yang Q. H., Wang Y. M., Tang X., Zhang Q. J., Dai S., Peng H. T., Lin Y. C., Tian Z. Q., Lu Z. Y., Chen L., Nano Lett., 2022, 22, 838; [39] Huang Y. B., Liang J., Wang X. S., Cao R., Chem. Soc. Rev., 2017, 46, 126; [40] Yang Q. H., Xu Q., Jiang H. L., Chem. Soc. Rev., 2017, 46, 4774; [41] Wang N., Sun Q. M., Yu J. H., Adv. Mater., 2019, 31, 1803966; [42] Yang X. C., Xu Q., Trends in Chem., 2020, 2, 214; [43] Sabo M., Henschel A., Fröde H., Klemm E., Kaskel S., J. Mater. Chem., 2007, 17, 3827; [44] Aijaz A., Karkamkar A., Choi Y. J., Tsumori N., Rönnebro E., Autrey T., Shioyama H., Xu Q., J. Am. Chem. Soc., 2012, 134, 13926; [45] Zhu Q. L., Li J., Xu Q., J. Am. Chem. Soc., 2013, 135, 10210; [46] Hermes S., Schröter M. K., Schmid R., Khodeir L., Muhler M., Tissler A., Fischer R. W., Fischer R. A., Angew. Chem. Int. Ed., 2005, 44, 6237; [47] Ishida T., Nagaoka M., Akita T., Haruta M., Chem. Eur. J., 2008, 14, 8456; [48] Li J., Zhu Q. L., Xu Q., Chem. Commun., 2014, 50, 5899; [49] Li J., Zhu Q. L., Xu Q., Catal. Sci. Technol., 2015, 5, 525; [50] Roy S., Pachfule P., Xu Q., Eur. J. Inorg. Chem., 2016, 2016, 4353; [51] He H. H., Li L. Y., Liu Y., Kassymova M., Li D. D., Zhang L. L., Jiang H. L., Nano Res., 2021, 14, 444; [52] Zhang W., Shi W., Ji W., Wu H., Gu Z., Wang P., Li X., Qin P., Zhang J., Fan Y., Wu T., Fu Y., Zhang W., Huo F., ACS Catal., 2020, 10, 5805; [53] Zhao M. T., Deng K., He L. C., Liu Y., Li G. D., Zhao H. J., Tang Z. Y., J. Am. Chem. Soc., 2014, 136, 1738; [54] Liu X., He L. C., Zheng J. Z., Guo J., Bi F., Ma X., Zhao K., Liu Y., Song R., Tang Z. Y., Adv. Mater., 2015, 27, 3273; [55] Sun Y. G., Xia Y. N., Science, 2002, 298, 2176; [56] Sau T. K., Murphy C. J., Langmuir, 2005, 21, 2923; [57] Chang G. G., Ma X. C., Zhang Y. X., Wang L. Y., Tian G., Liu J. W., Wu J., Hu Z. Y., Yang X. Y., Chen B. L., Adv. Mater., 2019, 31, 1904969; [58] Feng X., Hajek J., Jena H. S., Wang G., Veerapandian S. K. P., Morent R., De Geyter N., Leyssens K., Hoffman A. E. J., Meynen V., Marquez C., De Vos D. E., Van Speybroeck V., Leus K., Van Der Voort P., J. Am. Chem. Soc., 2020, 142, 3174; [59] Feng Y., Chen Q., Jiang M. Q., Yao J. F., Ind. Eng. Chem. Res., 2019, 58, 17646; [60] Gutterød E. S., Pulumati S. H., Kaur G., Lazzarini A., Solemsli B. G., Gunnæs A. E., Ahoba-Sam C., Kalyva M. E., Sannes J. A., Svelle S., Skúlason E., Nova A., Olsbye U., J. Am. Chem. Soc., 2020, 142, 17105; [61] Xu W. L., Zhang Y. W., Wang J. J., Xu Y. X., Bian L., Ju Q., Wang Y. M., Fang Z. L., Nat. Commun., 2022, 13, 2068; [62] He L. C., Liu Y., Liu J. Z., Xiong Y. S., Zheng J. Z., Liu Y. L., Tang Z. Y., Angew. Chem. Int. Ed., 2013, 52, 3741; [63] Liu H. L., Chang L. N., Bai C. H., Chen L. Y., Luque R., Li Y. W., Angew. Chem. Int. Ed., 2016, 55, 5019; [64] Chen L. Y., Chen H. R., Luque R., Li Y. W., Chem. Sci., 2014, 5, 3708; [65] Zhao M. T., Yuan K., Wang Y., Li G. D., Guo J., Gu L., Hu W. P., Zhao H. J., Tang Z. Y., Nature, 2016, 539, 76; [66] Li G. D., Zhao S. L., Zhang Y., Tang Z. Y., Adv. Mater., 2018, 30, 1800702; [67] Dai S., Tissot A., Serre C., Adv. Energy Mater., 2022, 12, 2100061; [68] Orr K. W. P., Collins S. M., Reynolds E. M., Nightingale F., Bostroem H. L. B., Cassidy S. J., Dawson D. M., Ashbrook S. E., Magdysyuk O. V., Midgley P. A., Goodwin A. L., Yeung H. H. M., Chem. Sci., 2021, 12, 4494; [69] Kuo C. H., Tang Y., Chou L. Y., Sneed B. T., Brodsky C. N., Zhao Z. P., Tsung C.-K., J. Am. Chem. Soc., 2012, 134, 14345; [70] Zhang S. W., Fan Y. Q., Luo L. S., Li C., Ma Y. H., Li T., Chem. Commun., 2021, 57, 3415; [71] Bai X. J., Zhai X., Zhang L. Y., Fu Y., Qi W., Matter, 2021, 4, 2919; [72] Choe K., Zheng F. B., Wang H., Yuan Y., Zhao W. S., Xue G. X., Qiu X. Y., Ri M., Shi X. H., Wang Y. L., Li G. D., Tang Z. Y., Angew. Chem. Int. Ed., 2020, 59, 3650; [73] Zhou A., Dou Y., Zhou J., Li J. R., ChemSusChem, 2020, 13, 205; [74] Wang H. W., Zheng F. B., Xue G. X., Wang Y. L., Li G. D., Tang Z. Y., Sci. China Chem., 2021, 64, 1854; [75] Liu D., Wan J. W., Pang G. S., Tang Z. Y., Adv. Mater., 2019, 31, 1803291; [76] Guo J., Qin Y. T., Zhu Y. F., Zhang X. F., Long C., Zhao M. T., Tang Z. Y., Chem. Soc. Rev., 2021, 50, 5366; [77] Zhang W., Zheng B., Shi W., Chen X., Xu Z., Li S., Chi Y. R., Yang Y., Lu J., Huang W., Huo F., Adv. Mater., 2018, 30, 1800643; [78] Zhang W. N., Lu G., Cui C. L., Liu Y. Y., Li S. Z., Yan W. J., Xing C., Chi Y. R., Yang Y. H., Huo F. W., Adv. Mater., 2014, 26, 4056; [79] Wang B. Q., Liu W. X., Zhang W. N., Liu J. F., Nano Res., 2017, 10, 3826; [80] Lu G., Li S. Z., Guo Z., Farha O. K., Hauser B. G., Qi X. Y., Wang Y., Wang X., Han S. Y., Liu X. G., DuChene J. S., Zhang H., Zhang Q. C., Chen X. D., Ma J., Loo S. C. J., Wei W. D., Yang Y. H., Hupp J. T., Huo F., Nat. Chem., 2012, 4, 310; [81] Liu Y., Shen Y., Zhang W. N., Weng J. N., Zhao M. T., Zhu T. S., Chi Y. R., Yang Y. H., Zhang H., Huo F. W., Chem. Commun., 2019, 55, 11770; [82] Chen D. X., Yang W. J., Jiao L., Li L. Y., Yu S. H., Jiang H. L., Adv. Mater., 2020, 32, 2000041; [83] Fan Z. Y., Staiger L., Hemmer K., Wang Z., Wang W. J., Xie Q. J., Zhang L. J., Urstoeger A., Schuster M., Lercher J. A., Cokoja M., Fischer R. A., Cell Rep. Phys. Sci., 2022, 3, 100757; [84] Li L. Y., Li Z. X., Yang W. J., Huang Y. M., Huang G., Guan Q. Q., Dong Y. M., Lu J. L., Yu S. H., Jiang H. L., Chem, 2021, 7, 686; [85] Jiao L., Wang J. X., Jiang H. L., Acc. Chem. Res., 2021, 2, 327; [86] Choi K. M., Na K., Somorjai G. A., Yaghi O. M., J. Am. Chem. Soc., 2015, 137, 7810; [87] Zhang W., Hu Y. L., Ge J., Jiang H. L., Yu S. H., J. Am. Chem. Soc., 2014, 136, 16978; [88] Zhang Z. J., Zhang S. L., Yao Q. L., Feng G., Zhu M. H., Lu Z. H., Inorg. Chem. Front., 2018, 5, 370; [89] Liu L. L., Zhou X. J., Guo L. X., Yan S. J., Li Y. J., Jiang S., Tai X. S., Rsc Adv., 2020, 10, 33417; [90] Ru W., Liu Y. N., Fu B. A., Fu F. Z., Feng J. T., Li D. Q., Small, 2022, 18, 2103852; [91] Zahid M., Li J., Ismail A., Zaera F., Zhu Y. J., Catal. Sci. Technol., 2021, 11, 2433; [92] Wu H. Q., Huang L., Li J. Q., Zheng A. M., Tao Y., Yang L. X., Yin W. H., Luo F., Inorg. Chem., 2018, 57, 12444; [93] Liu L. M., Chen Z. J., Wang J. J., Zhang D. L., Zhu Y. H., Ling S. L., Huang K. W., Belmabkhout Y., Adil K., Zhang Y., Slater B., Eddaoudi M., Han Y., Nat. Chem., 2019, 11, 622; [94] Tan Y. C., Zeng H. C., Nat. Commun., 2018, 9, 4326; [95] Fang Z., Bueken B., De Vos D. E., Fischer R. A., Angew. Chem. Int. Ed., 2015, 54, 7234; [96] Fang Z., Dürholt J. P., Kauer M., Zhang W., Lochenie C., Jee B., Albada B., Metzler-Nolte N., Pöppl A., Weber B., Muhler M., Wang Y., Schmid R., Fischer R. A., J. Am. Chem. Soc., 2014, 136, 9627; [97] Zhong J., Yang X., Wu Z., Liang B., Huang Y., Zhang T., Chem. Soc. Rev., 2020, 49, 1385; [98] Li J., Huang H., Xue W., Sun K., Song X., Wu C., Nie L., Li Y., Liu C., Pan Y., Jiang H.-L., Mei D., Zhong C., Nat. Catal., 2021, 4, 719; [99] Yi J. D., Xie R. K., Xie Z. L., Chai G. L., Liu T. F., Chen R. P., Huang Y. B., Cao R., Angew. Chem. Int. Ed., 2020, 59, 23641; [100] Meng D. L., Zhang M. D., Si D. H., Mao M. J., Hou Y., Huang Y. B., Cao R., Angew. Chem. Int. Ed., 2021, 60, 25485; [101] Wang H. Q., Nano Res., 2022, 15, 2834; [102] Gutterød E. S., Lazzarini A., Fjermestad T., Kaur G., Manzoli M., Bordiga S., Svelle S., Lillerud K. P., Skúlason E., Øien-Ødegaard S., Nova A., Olsbye U., J. Am. Chem. Soc., 2020, 142, 999; [103] Zhang W. L., Ji W. L., Li L. J., Qin P. S., Khalil I. E., Gu Z. D., Wang P., Li H. F., Fan Y., Ren Z., Shen Y., Zhang W. N., Fu Y., Huo F. W., ACS Appl. Mater. Interfaces, 2020, 12, 52660; [104] Dhakshinamoorthy A., Garcia H., ChemSusChem, 2014, 7, 2392; [105] Zhang Y. Y., Huang C., Mi L. W., Dalton Trans., 2020, 49, 14723; [106] Shi S. L., Yu Y., Zhang B. Z., Zhong Y. C., Wang L., Wang S. H., Ding S. M., Chen C., Front. Chem., 2021, 9, 738736; [107] Ardkhean R., Caputo D. F. J., Morrow S. M., Shi H., Xiong Y., Anderson E. A., Chem. Soc. Rev., 2016, 45, 1557; [108] Martínez S., Veth L., Lainer B., Dydio P., ACS Catal., 2021, 11, 3891; [109] Guo Y. C., Feng L., Wu C. C., Wang X. M., Zhang X., ACS Appl. Mater. Interfaces, 2019, 11, 33978; [110] Corma A., Iborra S., Velty A., Chem. Rev., 2007, 107, 2411; [111] Serrano-Ruiz J. C., Dumesic J. A., Energy Environ. Sci., 2011, 4, 83; [112] Song Y., Feng X. Y., Chen J. S., Brzezinski C., Xu Z. W., Lin W. B., J. Am. Chem. Soc., 2020, 142, 4872; [113] Wang Y. M., Tian H. M., Li H., Deng X. C., Zhang Q., Ai Y. J., Sun Z. J., Wang Y., Liu L., Hu Z. N., Zhang X. Y., Guo R. X., Xu W. J., Liang Q. L., Sun H. B., ACS Appl. Mater. Interfaces, 2022, 14, 7949; [114] Khoobiar S., J. Phys. Chem., 1964, 68, 411; [115] Boudart M., Vannice M. A., Benson J. E., Zeitschrift für Physikalische Chemie, 1969, 64, 171; [116] Yamazaki Y., Mori K., Kuwahara Y., Kobayashi H., Yamashita H., ACS Appl. Mater. Interfaces, 2021, 13, 48669; [117] Shen H. F., Li H., Yang Z. S., Li C. L., Green Energy Environ., 2022, doi:10.1016/j.gee.2022.01.013; [118] Harris J., Andersson S., Phys. Rev. Lett., 1985, 55, 1583; [119] Shao Y., Zeng H. C., ACS Appl Nano Mater., 2021, 4, 6030; [120] Geng Z., Wang D. B., Zhang C. M., Zhou X. Y., Xin H. F., Liu X. P., Cai M., Int. J. Hydrog. Energy, 2014, 39, 13643; [121] Karim W., Spreafico C., Kleibert A., Gobrecht J., VandeVondele J., Ekinci Y., van Bokhoven J. A., Nature, 2017, 541, 68; [122] Lueking A., Yang R. T., J. Catal., 2002, 206, 165; [123] Gutiérrez I., Díaz E., Ordóñez S., Thermochimica. Acta, 2013, 567, 79; [124] Li Y. W., Yang R. T., J. Am. Chem. Soc., 2006, 128, 726; [125] Sculley J. L., Yuan D. Q., Zhou H. C., Energy Environ. Sci., 2011, 4, 2721; [126] Xiong M., Gao Z., Qin Y., ACS Catal., 2021, 11, 3159; [127] Zhan G., Zeng H. C., Nat. Commun., 2018, 9, 3778; [128] Shen H. Y., Zhao H. H., Yang J., Zhao J., Yan L., Chou L. J., Song H. L., New J. Chem., 2022, 46, 3095; [129] Zhang W. L., Shi W. X., Ji W. L., Wu H. B., Gu Z. D., Wang P., Li X. H., Qin P. S., Zhang J., Fan Y., Wu T. Y., Fu Y., Zhang W. N., Huo F. W., ACS Catal., 2020, 10, 5805; [130] Guo C. Y., Liang C. H., Qin X. P., Gu Y. J., Gao P., Shao M. H., Wong W.-T, ACS Appl. Nano Mater., 2020, 3, 7242; [131] Qi L. X., Dai J. J., Liao Y. C., Tian J., Sun D. H., Catal. Sci. Technol., 2022, 12, 2519 |
[1] | WANG Yuda, ZULPYA Mahmut, ZHANG Xinyao, XU Shihan, SUN Jiao, DONG Biao. Recent Advances of Metal-Organic Frameworks-based Nanozymes for Bio-applications [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1324-1343. |
[2] | GUO Taolian, BAO Shutong, GUO Jie, CHEN Wu, WEN Lili. Bimetallic Au-Pd NPs Embedded in MOF Ultrathin Nanosheets with Tuned Surface Electronic Properties for High-performance Benzyl Alcohol Oxidation [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1344-1348. |
[3] | WANG Yitong, MENG Fanchen, SU Ruifa, SUN Changrui, HAN Qianqian, ZHANG Weina, ZHANG Suoying. Synergistic Catalysis of Enzymes and Biomimetic MOFs:Immobilizing Cyt c on Two-dimensional MOFs to Enhance the Performance of Peroxidase [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1356-1360. |
[4] | REN Fengdi, GAO Qiqin, CHEN Yuzhen. MxCo3O4/g-C3N4 Derived from Bimetallic MOFs/g-C3N4 Composites for Styrene Epoxidation by Synergistic Photothermal Catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1361-1367. |
[5] | PANG Kuan, XUE Huan, LIU Haixiong, SUN Jing, LIU Tianfu. Chelating Metal Ions in a Metal-Organic Framework for Constructing a Biomimetic Catalyst Through Post-modification [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1542-1546. |
[6] | MA Yanfu, WANG Liwei, LIU Jian. Single Atom Catalysts in Liquid Phase Selective Hydrogenations [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1163-1171. |
[7] | WANG Wenyang, LIU Hanlin, YANG Caoyu, FAN Ting, CUI Chengqian, LU Xiaoquan, TANG Zhiyong, LI Guodong. Coordinating Zirconium Nodes in Metal-Organic Framework with Trifluoroacetic Acid for Enhanced Lewis Acid Catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1301-1307. |
[8] | LI Jingkang, JIANG Yanxiao, YANG Jukun, SUN Ying, MA Pinyi, and SONG Daqian. Fabrication of the Metal-Organic Framework Membrane with Excellent Adsorption Properties for Paraben Based on Micro Fibrillated Cellulose [J]. Chemical Research in Chinese Universities, 2022, 38(3): 790-797. |
[9] | ZHANG Ziqi, WANG Hanbo, LI Yuxin, XIE Minggang, LI Chunguang, LU Haiyan, PENG Yu, and SHI Zhan. Confined Pyrolysis Synthesis of Well-dispersed Cobalt Copper Bimetallic Three-dimensional N-Doped Carbon Framework as Efficient Water Splitting Electrocatalyst [J]. Chemical Research in Chinese Universities, 2022, 38(3): 750-757. |
[10] | SHANG Zheliang, XUE Weinan, WANG Wei, LI Yan. Highly Stable CsPbBr3 Nanocrystal Phosphors by Surface Passivation and Encapsulation [J]. Chemical Research in Chinese Universities, 2022, 38(2): 588-595. |
[11] | HUANG Jin, CAI Yichen, YU Yulv, WANG Yuan. Conversion of CO2 to Multi-carbon Compounds over a CoCO3 Supported Ru-Pt Catalyst Under Mild Conditions [J]. Chemical Research in Chinese Universities, 2022, 38(1): 223-228. |
[12] | QIAO Junyi, LIU Xinyao, ZHANG Lirong, LIU Yunling. Self-assembly of 3p-Block Metal-based Metal-Organic Frameworks from Structural Perspective [J]. Chemical Research in Chinese Universities, 2022, 38(1): 31-44. |
[13] | LI Hengbo, WANG Kuikui, WU Mingyan, HONG Maochun. A Cage-based Porous Metal-Organic Framework for Efficient C2H2 Storage and Separation [J]. Chemical Research in Chinese Universities, 2022, 38(1): 82-86. |
[14] | YOU Dongyu, ZHAO Yujuan, YANG Weiting, PAN Qinhe, LI Jiyang. Metal-Organic Framework-based Wood Aerogel for Effective Removal of Micro/Nano Plastics [J]. Chemical Research in Chinese Universities, 2022, 38(1): 186-191. |
[15] | WONG Hon Ho, SUN Mingzi, HUANG Bolong. Synergistic Effect of Graphdiyne-based Electrocatalysts [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1242-1256. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||