Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2): 173-189.doi: 10.1007/s40242-024-4008-6
• Reviews • Previous Articles Next Articles
ZHAO Long1, HU Haolan1, MA Xiaoqian1, LYU Yifan1,4, YUAN Quan1, TAN Weihong1,2,3
Received:
2024-01-10
Revised:
2024-02-22
Online:
2024-04-01
Published:
2024-03-27
Contact:
LYU Yifan lvyifan1990@hnu.edu.cn;YUAN Quan yuanquan@whu.edu.cn
Supported by:
ZHAO Long, HU Haolan, MA Xiaoqian, LYU Yifan, YUAN Quan, TAN Weihong. Aptamer-based Membrane Protein Analysis and Molecular Diagnostics[J]. Chemical Research in Chinese Universities, 2024, 40(2): 173-189.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Uhlén M., Fagerberg L., Hallström B. M., Lindskog C., Oksvold P., Mardinoglu A., Sivertsson Å., Kampf C., Sjöstedt E., Asplund A., Olsson I., Edlund K., Lundberg E., Navani S., Szigyarto C. A.-K., Odeberg J., Djureinovic D., Takanen J. O., Hober S., Alm T., Edqvist P.-H., Berling H., Tegel H., Mulder J., Rockberg J., Nilsson P., Schwenk J. M., Hamsten M., von Feilitzen K., Forsberg M., Persson L., Johansson F., Zwahlen M., von Heijne G., Nielsen J., Pontén F., Science, 2015, 347, 1260419 [2] Chatzi K. E., Sardis M. F., Karamanou S., Economou A., Biochem. J., 2013, 449, 25 [3] Hedin L. E., Illergard K., Elofsson A., J Proteome Res.,2011, 10, 3324 [4] Oradd F., Andersson M., J. Membr. Biol.,2021, 254, 51 [5] Zhang K., Gao H., Deng R., Li J., Angew. Chem. Int. Ed., 2019, 58, 4790 [6] Caricasole A., Copani A., Caruso A., Caraci F., Iacovelli L., Sortino M. A., Terstappen G. C., Nicoletti F., Trends Pharmacol. Sci., 2003, 24, 233 [7] Loibl S., Gianni L., Lancet, 2017, 389, 2415 [8] Famulok M., Hartig J. S., Mayer G., Chem. Rev.,2007, 107, 3715 [9] Levy-Nissenbaum E., Radovic-Moreno A. F., Wang A. Z., Langer R., Farokhzad O. C., Trends in Biotech., 2008, 26, 442 [10] Pestourie C., Tavitian B., Duconge F., Biochimie, 2005,87, 921 [11] Meng H.-M., Liu H., Kuai H., Peng R., Mo L., Zhang X.-B., Chem. Soc. Rev., 2016, 45, 2583 [12] Ellington A. D., Szostak J. W., Nature, 1990,346, 818 [13] Tuerk C., Gold L., Science, 1990, 249, 505 [14] Tan W., Donovan M. J., Jiang J., Chem. Rev.,2013, 113, 2842 [15] Fang X., Tan W., Acc. Chem. Res., 2009,43, 48 [16] Kong H. Y., Byun J., Biomol Ther., 2013, 21, 423 [17] Ababneh N., Alshaer W., Al-Louzi O., Mahafzah A., El-Khateeb M., Hillaireau H., Noiray M., Fattal E., Ismail S., Nucleic Acid Therapeutics, 2013, 23, 401 [18] Song Z., Mao J., Barrero R.A., Wang P., Zhang F., Wang T.,Molecules, 2020, 25, 5585 [19] Meng H.-M., Fu T., Zhang X.-B., Tan W., Natl. Sci. Rev., 2015, 2, 71 [20] Shangguan D., Li Y., Tang Z., Cao Z. C., Chen H. W., Mallikaratchy P., Sefah K., Yang C. J., Tan W., P. N. A. S.,2006, 103, 11838 [21] Lin M., Zhang J., Wan H., Yan C., Xia F., ACS Appl. Mater. Inter., 2020, 13, 9369 [22] Zhu H., Wu E., Pan Z., Zhang C., Zhang Y., Liao Q., Wang Y., Sun Y., Ye M., Wu W., Anal. Chem., 2023, 95, 3238 [23] Fang X., Tan W., Acc. Chem. Res., 2010,43, 48 [24] Gao T., Mao Z., Li W., Pei R., J. Mater. Chem. B, 2021, 9, 746 [25] Bayat P., Taghdisi S. M., Rafatpanah H., Abnous K., Ramezani M., Talanta, 2019, 194, 399 [26] Raddatz M.-S. L., Dolf A., Endl E., Knolle P., Famulok M., Mayer G., Angew. Chem. Int. Ed., 2008, 47, 5190 [27] Mayer G., Ahmed M.-S. L., Dolf A., Endl E., Knolle P. A., Famulok M., Nat. Protoc., 2010, 5, 1993 [28] Hicke B. J., Marion C., Chang Y.-F., Gould T., Lynott C. K., Parma D., Schmidt P. G., Warren S., J. Bio. Chem., 2001,276, 48644 [29] Souza A. G., Marangoni K., Fujimura P. T., Alves P. T., Silva M. J., Bastos V. A. F., Goulart L. R., Goulart V. A., Experimental Cell Research, 2016, 341, 147 [30] Lao Y.-H., Phua K. K. L., Leong K. W., ACS Nano, 2015,9, 2235 [31] Chushak Y., Stone M. O., Nucleic Acids Res., 2009,37, 87 [32] Manju N., Samiha C. M., Kumar S. P. P., Gururaj H. L., Flammini F., IEEE Access, 2022, 10, 49677 [33] Sun D., Sun M., Zhang J., Lin X., Zhang Y., Lin F., Zhang P., Yang C., Song J., TrAC Trends in Analytical Chemistry, 2022, 157, 116767 [34] Camorani S., Esposito C. L., Rienzo A., Catuogno S., Iaboni M., Condorelli G., de Franciscis V., Cerchia L., Molecular Therapy,2014, 22, 828 [35] Hu Y., Duan J., Zhan Q., Wang F., Lu X., Yang X.-D., PLoS One, 2012, 7, 31970 [36] Wang D.-L., Song Y.-L., Zhu Z., Li X.-L., Zou Y., Yang H.-T., Wang J.-J., Yao P.-S., Pan R.-J., Yang C. J., Kang D.-Z., Biochem. Bio. Res. Co., 2014, 453, 681 [37] Gao T., Ding P., Li W., Wang Z., Lin Q., Pei R., Nanoscale,2020, 12, 22574 [38] Fafińska J., Czech A., Sitz T., Ignatova Z., Hahn U., Nucleic Acid Therapeutics, 2018, 28, 326 [39] Du J., Hong J., Xu C., Cai Y., Xiang B., Zhou C., Xu X., BioMed. Res. Int., 2015, 2015, 1 [40] Bing T., Shangguan D., Wang Y., Molecular & Cellular Proteomics, 2015, 14, 2692 [41] Plummer K. A., Carothers J. M., Yoshimura M., Szostak J. W., Verdine G. L., Nucleic Acids Res., 2005, 33, 5602 [42] Jeon W., Lee S., Dh M., Ban C., Anal. Biochem., 2013,439, 11 [43] Lin C. Y., Lee C. H., Chuang Y. H., Lee J. Y., Chiu Y. Y., Wu Lee Y. H., Jong Y. J., Hwang J. K., Huang S. H., Chen L. C., Wu C. H., Tu S. H., Ho Y. S., Yang J. M., Nat. Commun., 2019, 10, 3131 [44] Huang H., Groth J., Sossey-Alaoui K., Hawthorn L., Beall S., Geradts J., Clinic. Cancer Res., 2005, 11, 4357 [45] Hosonaga M., Arima Y., Kohno N., Saya H., J. Clini. Oncol., 2014, 32, 11572 [46] Chen Y., Munteanu A. C., Huang Y. F., Phillips J., Zhu Z., Mavros M., Tan W., Chemistry, 2009, 15, 5327 [47] Shi H., He X., Wang K., Wu X., Ye X., Guo Q., Tan W., Qing Z., Yang X., Zhou B., Proc. Natl. Acad. Sci. USA,2011, 108, 3900 [48] Zhao G., Li H., Gao J., Cai M., Xu H., Shi Y., Wang H., Wang H., Anal. Chem., 2021, 93, 14113 [49] Letschert S., Göhler A., Franke C., Bertleff-Zieschang N., Memmel E., Doose S., Seibel J., Sauer M., Angew. Chem. Int. Ed., 2014, 53, 10921 [50] Chen J., Li H., Wu Q., Yan Q., Sun J., Liang F., Liu Y., Wang H., Anal. Chem., 2021, 93, 936 [51] Strauss S., Nickels P. C., Strauss M. T., Jimenez Sabinina V., Ellenberg J., Carter J. D., Gupta S., Janjic N., Jungmann R., Nature Methods, 2018, 15, 685 [52] Vaught J. D., Bock C., Carter J., Fitzwater T., Otis M., Schneider D., Rolando J., Waugh S., Wilcox S. K., Eaton B. E., J. Am. Chem. Soc., 2010, 132, 4141 [53] Rohloff J. C., Gelinas A. D., Jarvis T. C., Ochsner U. A., Schneider D. J., Gold L., Janjic N., Mol. Ther. Nucleic Acids,2014, 3, 201 [54] Jiang Y., Shi M., Liu Y., Wan S., Cui C., Zhang L., Tan W., Angew. Chem. Int. Ed. Engl., 2017,56, 11916 [55] Li L., Wang Q., Feng J., Tong L., Tang B., Anal. Chem., 2014, 86, 5101 [56] Chen Y., Munteanu A, C., Huang Y. F., Phillips J., Zhu Z., Mavros M., Tan W., Chemistry, 2009, 15, 5327 [57] Rubin C. S., Rosen O. M., Annual Rev. Biochem., 1975,44, 831 [58] Paik W. K., Paik D. C., Kim S., Trends. Biochem. Sci., 2007, 32, 146 [59] Zhao S., Xu W., Jiang W., Yu W., Lin Y., Zhang T., Yao J., Zhou L., Zeng Y., Li H., Science, 2010, 327, 1000 [60] Paleček E., Tkáč J., Bartosik M., Bertók T. S., Ostatná V., Paleček J., Chem. Rev., 2015, 115, 2045 [61] Pinho S. S., Reis C. A., Nature Rev. Cancer, 2015,15, 540 [62] Brownlee M. D. M., Annual Rev. Med., 1995, 46, 223 [63] Liddy K. A., White M. Y., Cordwell S. J., Genome Medicine, 2013, 5, 1 [64] Saxon E., Bertozzi C. R., Science, 2000, 287, 2007 [65] Jewett J.C., Bertozzi C. R., Chem. Soc. Rev., 2010, 39, 1272 [66] Robinson P. V., de Almeida-Escobedo G., de Groot A. E., McKechnie J. L., Bertozzi C. R., J. Am. Chem. Soc.,2015, 137, 10452 [67] Piston D. W., Kremers G.-J., Trends Biochem. Sci.,2007, 32, 407 [68] Yuan B., Chen Y., Sun Y., Guo Q., Huang J., Liu J., Meng X., Yang X., Wen X., Li Z., Li L., Wang K., Anal. Chem., 2018, 90, 6131 [69] Liu Z., Liang Y., Cao W., Gao W., Tang B., Anal. Chem.,2021, 93, 8915 [70] Li J., Liu S., Sun L., Li W., Zhang S.-Y., Yang S., Li J., Yang H.-H., J. Am. Chem. Soc., 2018,140, 16589 [71] Huang M., Zhu L., Kang S., Chen F., Wei X., Lin L., Chen X., Wang W., Zhu Z., Yang C., Song Y., Anal. Chem., 2021, 93, 15958 [72] Tommasone S., Allabush F., Tagger Y. K., Norman J., Kopf M., Tucker J. H. R., Mendes P. M., Chem. Soc. Rev., 2019,48, 5488 [73] Li M., Lin N., Huang Z., Du L., Altier C., Fang H., Wang B., J. Am. Chem. Soc., 2008, 130, 12636 [74] Díaz-Fernández A., Miranda-Castro R., de-los-Santos-Álvarez N., Rodríguez E. F., Lobo-Castañón M. J., Biosens. Bioelectron., 2019, 128, 83 [75] Yoshikawa A. M., Rangel A., Feagin T., Chun E. M., Wan L., Li A., Moeckl L., Wu D., Eisenstein M., Pitteri S., Soh H. T., Nat Commun.,2021, 12, 7106 [76] Cui Y., Yu M., Yao X., Xing J., Lin J., Li X., Molecular Plant, 2018, 11, 1315 [77] Kusumi A., Tsunoyama T. A., Hirosawa K. M., Kasai R. S., Fujiwara T. K., Nat. Chem. Bio., 2014, 10, 524 [78] Wolfbeis O. S., Chem. Soc. Rev., 2015,44, 4743 [79] Howarth M., Takao K., Hayashi Y., Ting A. Y., P. N.A. S., 2005, 102, 7583 [80] Chen L. Q., Xiao S. J., Hu P. P., Peng L., Ma J., Luo L. F., Li Y. F., Huang C. Z., Anal. Chem., 2012, 84, 3099 [81] Delcanale P., Porciani D., Pujals S., Jurkevich A., Chetrusca A., Tawiah K. D., Burke D. H., Albertazzi L., Angew. Chem. Int. Ed., 2020, 59, 18546 [82] Shen H., Tauzin L. J., Baiyasi R., Wang W., Moringo N., Shuang B., Landes C. F., Chem Rev., 2017, 117, 7331 [83] Zhang L., Chu M., Ji C., Wei J., Yang Y., Huang Z., Tan W., Tan J., Yuan Q., Anal. Chem., 2022, 94, 17413 [84] Albright S., Cacace M., Tivon Y., Deiters A., J. Am. Chem. Soc., 2023, 145, 16458 [85] Du Y., Lyu Y., Li S., Ding D., Chen J., Yang C., Sun Y., Qu F., Xiao Z., Jiang J., Tan W., Angew. Chem. Int. Ed.,2022, 62, 202215387 [86] Klemm J. D., Schreiber S. L., Crabtree G. R., Annu. Rev. Immunol., 1998, 16, 569 [87] Hynes N. E., Lane H. A., Nature Rev. Cancer, 2005,5, 341 [88] You M., Lyu Y., Han D., Qiu L., Liu Q., Chen T., Sam Wu C., Peng L., Zhang L., Bao G., Tan W., Nat. Nanotechnol., 2017,12, 453 [89] Fredriksson S., Gullberg M., Jarvius J., Olsson C., Pietras K., Gústafsdóttir S. M., Östman A., Landegren U., Nat. Biotechnol., 2002, 20, 473 [90] Liang H., Chen S., Li P., Wang L., Li J., Li J., Yang H. H., Tan W., J. Am. Chem. Soc., 2018, 140, 4186 [91] Wang L., Li W., Sun J., Zhang S.-Y., Yang S., Li J., Li J., Yang H. H., Anal. Chem., 2018, 90, 14433 [92] Li Y., Zhang X., Pan W., Li N., Tang B., Anal. Chem., 2020, 92, 11921 [93] Bing T., Shen L., Wang J., Wang L., Liu X., Zhang N., Xiao X., Shangguan D., Adv. Sci., 2019, 6, 1900143 [94] Dong C., Fang X., Qin X., Wang Y., Zhang J., Song C., Wang L., Anal. Chem., 2023, 95, 6810 [95] Keskin O., Gursoy A., Ma B., Nussinov R., Chem. Rev., 2008, 108, 1225 [96] Massimino M. L., Simonato M., Spolaore B., Franchin C., Arrigoni G., Marin O., Monturiol-Gross L., Fernandez J., Lomonte B., Tonello F., Sci. Rep., 2018, 8, 10619 [97] Zhu L., Xu Y., Wei X., Lin H., Huang M., Lin B., Song Y., Yang C., Angew. Chem. Int. Ed. Engl., 2021,60, 18111 [98] Mori T., Oguro A., Ohtsu T., Nakamura Y., Nucleic. Acids Res., 2004, 32, 6120 [99] Zhang H. Q., Li X. F., Le X. C., Anal. Chem., 2009,81, 7795 [100] Lee H., Kim T. H., Park D., Jang M., Chung J. J., Kim S. H., Kim S. H., Lee K. H., Jung Y., Oh S. J., Pharmaceutics,2020, 12, 689 [101] Sengupta P., Jovanovic-Talisman T., Skoko D., Renz M., Veatch S. L., Lippincott-Schwartz J.,Nature Methods, 2011, 8, 969 [102] Eraslan G., Avsec Ž., Gagneur J., Theis F.J., Nat. Rev. Genet., 2019, 20, 389 [103] Hollingsworth M. A., Swanson B. J., Nature Rev. Cancer, 2004, 4, 45 [104] Zhang Y., Chen W., Fang Y., Zhang X., Liu Y., Ju H., J. Am. Chem. Soc., 2021,143, 15233 [105] You M., Peng L., Shao N., Zhang L., Qiu L., Cui C., Tan W., J. Am. Chem. Soc.,2014, 136, 1256 [106] You M., Zhu G., Chen T., Donovan M. J., Tan W., J. Am. Chem. Soc., 2015,137, 667 [107] Feng C., Chen T., Mao D., Zhang F., Tian B., Zhu X., ACS Sens., 2020, 5, 3116 [108] El Andaloussi S., Mäger I., Breakefield X. O., Wood M. J. A., Nat. Rev. Drug Discov.,2013, 12, 347 [109] Yan H., Li Y., Cheng S., Zeng Y., Anal. Chem., 2021, 93, 4739 [110] Im H., Shao H., Park Y. I., Peterson V. M., Castro C. M., Weissleder R., Lee H., Nat. Biotechnol., 2014, 32, 490 [111] Fan Q., Yang L., Zhang X., Peng X., Wei S., Su D., Zhai Z., Hua X., Li H., Cancer Lett., 2018,414, 107 [112] Hoshino A., Kim H. S., Bojmar L., Gyan K. E., Cioffi M., Hernandez J., Zambirinis C. P., Rodrigues G., Molina H., Heissel S., Mark M. T., Steiner L., Benito-Martin A., Lucotti S., Di Giannatale A., Offer K., Nakajima M., Williams C., Nogués L., Pelissier Vatter F. A., Hashimoto A., Davies A. E., Freitas D., Kenific C. M., Ararso Y., Buehring W., Lauritzen P., Ogitani Y., Sugiura K., Takahashi N., Alečković M., Bailey K. A., Jolissant J. S., Wang H., Harris A., Schaeffer L. M., García-Santos G., Posner Z., Balachandran V. P., Khakoo Y., Raju G. P., Scherz A., Sagi I., Scherz-Shouval R., Yarden Y., Oren M., Malladi M., Petriccione M., De Braganca K. C., Donzelli M., Fischer C., Vitolano S., Wright G. P., Ganshaw L., Marrano M., Ahmed A., DeStefano J., Danzer E., Roehrl M. H. A., Lacayo N. J., Vincent T. C., Weiser M. R., Brady M. S., Meyers P. A., Wexler L. H., Ambati S. R., Chou A. J., Slotkin E. K., Modak S., Roberts S. S., Basu E. M., Diolaiti D., Krantz B. A., Cardoso F., Simpson A. L., Berger M., Rudin C. M., Simeone D. M., Jain M., Ghajar C. M., Batra S. K., Stanger B. Z., Bui J., Brown K. A., Rajasekhar V. K., Healey J. H., De Sousa M., Kramer K., Sheth S., Baisch J., Pascual V., Heaton T. E., La Quaglia M. P., Pisapia D. J., Schwartz R., Zhang H., Liu Y., Shukla A., Blavier L., DeClerck Y. A., LaBarge M., Bissell M. J., Caffrey T. C., Grandgenett P. M., Hollingsworth M. A., Bromberg J., Costa-Silva B., Peinado H., Kang Y., Garcia B. A., O’Reilly E. M., Kelsen D., Trippett T. M., Jones D. R., Matei I.R., Jarnagin W. R., Lyden D., Cell,2020, 182, 1044 [113] Li Y., Deng J., Han Z., Liu C., Tian F., Xu R., Han D., Zhang S., Sun J., J. Am. Chem. Soc., 2021, 143, 1290 [114] Yu Y., Guo Q., Jiang W., Zhang H., Cai C., Anal. Chem., 2021, 93, 11298 [115] Wu N., Zhang X.-Y., Xia J., Li X., Yang T., Wang J.-H., ACS Nano, 2021, 15, 19522 [116] Cristiano S., Leal A., Phallen J., Fiksel J., Adleff V., Bruhm D. C., Jensen S. Ø., Medina J. E., Hruban C., White J. R., Palsgrove D. N., Niknafs N., Anagnostou V., Forde P., Naidoo J., Marrone K., Brahmer J., Woodward B. D., Husain H., van Rooijen K. L., Ørntoft M.-B. W., Madsen A. H., van de Velde C. J. H., Verheij M., Cats A., Punt C.J.A., Vink G. R., van Grieken N.C.T., Koopman M., Fijneman R. J. A., Johansen J. S., Nielsen H. J., Meijer G. A., Andersen C. L., Scharpf R. B., Velculescu V. E., Nature, 2019, 570, 385 [117] Pastorino U., Silva M., Sestini S., Sabia F., Boeri M., Cantarutti A., Sverzellati N., Sozzi G., Corrao G., Marchianò A., Anna. Oncol., 2019, 30, 1162 [118] Crosby D., Bhatia S., Brindle K. M., Coussens L. M., Dive C., Emberton M., Esener S., Fitzgerald R. C., Gambhir S. S., Kuhn P., Rebbeck T. R., Balasubramanian S., Science, 2022,375, 9040 [119] Xiao S., Yao Y., Liao S., Xu B., Li X., Zhang Y., Zhang L., Chen Q., Tang H., Song Q., Dong M., Nano Lett., 2023, 23, 8115 [120] Li P., Yu X., Han W., Kong Y., Bao W., Zhang J., Zhang W., Gu Y., ACS Sens., 2019, 4, 1433 [121] Liu C., Zhao J., Tian F., Cai L., Zhang W., Feng Q., Chang J., Wan F., Yang Y., Dai B., Cong Y., Ding B., Sun J., Tan W., Nat. Biomed. Eng., 2019, 3, 183 [122] Tian F., Zhang S., Liu C., Han Z., Liu Y., Deng J., Li Y., Wu X., Cai L., Qin L., Chen Q., Yuan Y., Liu Y., Cong Y., Ding B., Jiang Z., Sun J., Nat. Commun., 2021,12, 2536 [123] Li J., Li Y., Li Q., Sun L., Tan Q., Lu Y., Zhu J., Qu F., Tan W., Angew. Chem. Int. Ed., 2024, 63, e202314262 [124] Zhou X., Jia Y., Mao C., Liu S., Cancer Lett., 2024, 580, 216481 [125] Emami N., Pakchin P. S., Ferdousi R., J. Theor. Biol., 2020, 497, 110268 [126] Thirunavukarasu D., Chen T., Liu Z., Hongdilokkul N., Romesberg F. E., J. Am. Chem. Soc., 2017, 139, 2892 |
[1] | CHEN Sisi, ZHANG Lei, YUAN Quan, TAN Jie. Current Advances in Aptamer-based Biomolecular Recognition and Biological Process Regulation [J]. Chemical Research in Chinese Universities, 2022, 38(4): 847-855. |
[2] | TANG Tianwei, LIU Yinghuan, JIANG Ying. Recent Progress on Highly Selective and Sensitive Electrochemical Aptamer-based Sensors [J]. Chemical Research in Chinese Universities, 2022, 38(4): 866-878. |
[3] | CHANG Kaili, SUN Peng, DONG Xin, ZHU Chunnan, LIU Xiaojun, ZHENG Dongyun, LIU Chao. Aptamers as Recognition Elements for Electrochemical Detection of Exosomes [J]. Chemical Research in Chinese Universities, 2022, 38(4): 879-885. |
[4] | HU Lingling, LIU Ke, REN Guolan, LIANG Jiangong, WU Yuan. Progress in DNA Aptamers as Recognition Components for Protein Functional Regulation [J]. Chemical Research in Chinese Universities, 2022, 38(4): 894-901. |
[5] | HUANG Qin, LIU Xin, ZHANG Pengge, WU Zhan, ZHAO Zilong. A DNA Nano-train Carrying a Predefined Drug Combination for Cancer Therapy [J]. Chemical Research in Chinese Universities, 2022, 38(4): 928-934. |
[6] | YIN Fangfei, CAO Nan, XIANG Xuelin, FENG Hao, LI Fan, LI Min, XIA Qiang, ZUO Xiaolei. DNA Framework-based Topological Aptamer for Differentiating Subtypes of Hepatocellular Carcinoma Cells [J]. Chemical Research in Chinese Universities, 2021, 37(4): 919-924. |
[7] | XIONG Jin'en, LI Shuang, LI Yi, CHEN Yingli, LIU Yu, GAN Junlan, JU Jiahui, XIAN Yaoling, XIONG Xiaohui. Fluorescent Aptamer-Polyethylene Glycol Functionalized Graphene Oxide Biosensor for Profenofos Detection in Food [J]. Chemical Research in Chinese Universities, 2020, 36(5): 787-794. |
[8] | TIAN Jinmiao, CHEN Sikai, WANG Xiang, LI Juan. Evolution of Artificial Base Pairs with Hydrogen Bond Complementarity [J]. Chemical Research in Chinese Universities, 2020, 36(2): 151-156. |
[9] | LI Tao, DUAN Ruilin, DUAN Zhijuan, HUANG Fujian, XIA Fan. Fluorescence Signal Amplification Strategies Based on DNA Nanotechnology for miRNA Detection [J]. Chemical Research in Chinese Universities, 2020, 36(2): 194-202. |
[10] | YANG Linlin, MIAO Yanyan, HAN Da. DNA Nanotechnology on Live Cell Membranes [J]. Chemical Research in Chinese Universities, 2020, 36(2): 203-210. |
[11] | WANG Mingyang, DUAN Jialin, DAI Lizhi, XIN Xiaodong, WANG Fangfang, LI Zheng, TIAN Ye. Characterization of 3D DNA Assemblies Using Cryogenic Electron Microscopy [J]. Chemical Research in Chinese Universities, 2020, 36(2): 227-236. |
[12] | DONG Yuhang, PAN Xiaorui, LI Feng, YANG Dayong. pH-Responsive Reversible DNA Self-assembly Mediated by Zwitterion [J]. Chemical Research in Chinese Universities, 2020, 36(2): 285-290. |
[13] | CAO Mengyao, SUN Yueyang, XIAO Mingshu, LI Li, LIU Xiaohui, JIN Hong, PEI Hao. Multivalent Aptamer-modified DNA Origami as Drug Delivery System for Targeted Cancer Therapy [J]. Chemical Research in Chinese Universities, 2020, 36(2): 254-260. |
[14] | LI Xue, YANG Donglei, SHEN Luyao, XU Fan, WANG Pengfei. Programmable Assembly of DNA-protein Hybrid Structures [J]. Chemical Research in Chinese Universities, 2020, 36(2): 211-218. |
[15] | QIN Xinyuan, SU Yuanye, TAN Jie, YUAN Quan. Artificial Nucleotide-containing Aptamers Used in Tumor Therapy [J]. Chemical Research in Chinese Universities, 2020, 36(2): 164-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||