Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2): 194-202.doi: 10.1007/s40242-019-0031-4
• Reviews • Previous Articles Next Articles
LI Tao, DUAN Ruilin, DUAN Zhijuan, HUANG Fujian, XIA Fan
Received:
2019-10-30
Revised:
2019-11-27
Online:
2020-04-01
Published:
2020-03-18
Contact:
HUANG Fujian
E-mail:huangfj@cug.edu.cn
Supported by:
LI Tao, DUAN Ruilin, DUAN Zhijuan, HUANG Fujian, XIA Fan. Fluorescence Signal Amplification Strategies Based on DNA Nanotechnology for miRNA Detection[J]. Chemical Research in Chinese Universities, 2020, 36(2): 194-202.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Zhao Y. X., Chen F., Li Q., Wang L. H., Fan C. H., Chem. Rev., 2015, 115, 12491 |
[2] | Newman A. M., Bratman S. V., To J., Wynne J. F., Eclov N. C. W., Modlin L. A., Liu C. L., Neal J. W., Wakelee H. A., Merritt R. E., Shrager J. B., Loo Jr. W. L., Alizadeh A. A., Diehn M., Nat. Med., 2014, 20, 548 |
[3] | Dai Y., Huang. S., Tang M., Lv T. Y., Hu C. X., Tan Y. H., Xu Z. M., Yin Y. B., Lupus, 2007, 16, 936 |
[4] | Thum T., Condorelli G., Circ. Res., 2015, 116, 751 |
[5] | Rodriguez M. M., Linnes J. C., Fan A., Ellenson C. K., Pollock N. R., Klapperich C. M., Anal. Chem., 2015, 87, 7872 |
[6] | Sullenger B. A., Gilboa E., Nature, 2002, 418, 252 |
[7] | Shi C., Shen X. T., Niu S. Y., Ma C. P., J. Am. Chem. Soc., 2015, 137, 13804 |
[8] | Friedman R. C., Farh K. K. H., Burge C. B., Bartel D. P., Genome Res., 2009, 19, 92 |
[9] | Yeung M. L., Bennasser Y., Jeang K. T., Curr. Med. Chem., 2007, 14, 191 |
[10] | Sawyers C. L., Nature, 2008, 452, 548 |
[11] | Iorio M. V., Croce C. M., Mol. Med., 2012, 4, 143 |
[12] | Liu C. Y., Wen J., Meng Y. B., Zhang K. L., Zhu J. L., Ren Y., Qian X. M., Yuan X. B., Lu Y. F., Kang C. S., Adv. Mater., 2015, 27, 292 |
[13] | Huang F. J., Xia F., Sci. Bull., 2017, 62, 312 |
[14] | Silahtaroglu A. N., Nolting D., Dyrskjøt L., Berezikov E., Møller M., Tommerup N., Kauppinen S., Nat. Protoc., 2007, 2, 2520 |
[15] | Jin Z. W., Geißler D., Qiu X., Wegner KD., Hildebrandt N., Angew. Chem. Int. Ed., 2015, 54, 10024 |
[16] | Causa F., Aliberti A., Cusano A. M., Battista E., Netti P. A., J. Am. Chem. Soc., 2015, 137, 1758 |
[17] | Oishi M., Sugiyama S., Small, 2016, 12, 5153 |
[18] | Dong J., Chen G. Y., Wang W., Huang X., Peng H. P., Pu Q. L., Du F., Cui X., Deng Y., Tang Z., Anal. Chem., 2018, 90, 7107 |
[19] | Wu H., Liu Y. L., Wang H. Y., Wu J., Zhu F. F., Zou P., Biosens. Bioelectron., 2016, 81, 303 |
[20] | Yu Y. Y., Chen Z. G., Shi L. J., Yang F., Pan J. B., Zhang B. B., Sun D. P., Anal. Chem., 2014, 86, 8200 |
[21] | Koo K. M., Carrascosa L. G., Shiddiky M. J. A., Trau M., Anal. Chem., 2016, 88, 2000 |
[22] | Huang F. J., Lin M. H., Duan R. L., Lou X. D., Xia F., Willner I., Nano Lett., 2018, 18, 5116 |
[23] | Miao P., Zhang T., Xu J. H., Tang Y. G., Anal. Chem., 2018, 90, 11154 |
[24] | Bi S., Zhang J. L., Hao S. Y., Ding C. F., Zhang S. S., Anal. Chem., 2011, 83, 3696 |
[25] | Wang Q., Yin B, C., Ye B. C., Biosens. Bioelectron., 2016, 80, 366 |
[26] | Pavlov V., Xiao Y., Gill R., Dishon A., Kotler M., Willner I., Anal. Chem., 2004, 76, 2152 |
[27] | Šípová H., Zhang S. L., Dudley A. M., Galas D., Wang K., Homola J., Anal. Chem., 2010, 82, 10110 |
[28] | Liu R. J., Wang Q., Li Q., Yang X. H., Wang K., Nie W. Y., Biosens. Bioelectron., 2017, 87, 433 |
[29] | Wang Q., Li Q., Yang X. H., Wang K. M., Du S. S., Zhang H., Nie Y. J., Biosens. Bioelectron., 2016, 77, 1001 |
[30] | Zhao H. Y., Wang L., Zhu J., Wei H. P., Jiang W., Talanta, 2015, 138, 163 |
[31] | Yin B. C., Liu Y. Q., Ye B. C., J. Am. Chem. Soc., 2012, 134, 5064 |
[32] | Qiu X., Hildebrandt N., ACS Nano, 2015, 9, 8449 |
[33] | Degliangeli F., Kshirsagar P., Brunetti V., Pompa P. P., Fiammengo R., J. Am. Chem. Soc., 2014, 136, 2264 |
[34] | Dong H. F., Jin S., Ju H. X., Hao K. H., Xu L. P., Lu H. T., Zhang X. J., Anal. Chem., 2012, 84, 8670 |
[35] | Yang L., Liu C. H., Ren W., Li Z. P., ACS Appl. Mater. Interfaces., 2012, 4, 6450 |
[36] | Ou X. W., Zhan S. S., Sun C. L., Cheng Y., Wang X. D., Liu B. F., Zhai T. Y., Lou X. D., Xia F., Biosens. Bioelectron., 2019, 124, 199 |
[37] | Min X. H., Zhang M. S., Huang F. J., Lou X. D., Xia F., ACS Appl. Mater. Interfaces., 2016, 8, 8998 |
[38] | Min X. H., Zhuang Y., Zhang Z. Y., Jia Y. M., Hakeem A., Zheng F. X., Cheng Y., Tang B. Z., Lou X. D., Xia F., ACS Appl. Mater. Interfaces., 2015, 7, 16813 |
[39] | Min X. H., Xia L., Zhuang Y., Wang X. D., Du J., Zhang X. J., Lou X. D., Xia F., Sci. Bull., 2017, 62, 997 |
[40] | Wang L. D., Deng R. J., Li J. H., Chem. Sci., 2015, 6, 6777 |
[41] | Thomson J. M., Parker J., Perou C. M., Hammond S. M., Nat. Methods., 2004, 1, 47 |
[42] | Válóczi A., Hornyik C., Varga N., Burgyán J., Kauppinen S., Havelda Z., Nucleic Acids Res., 2004, 32, e175 |
[43] | Gasic E. V., Wu R. M., Wood M., Walton E. F., Hellens R. P., Plant Methods, 2007, 3, 12 |
[44] | Chen C. F., Ridzon D. A., Broomer A. J., Zhou Z. H., Lee D. H.,. Nguyen J. T., Barbisin M., Xu N. L., Mahuvakar V. R., Andersen M. R., Lao K. Q., Livak K. L., Guegler K. J., Nucleic Acids Res., 2005, 33, e179 |
[45] | Liu N. N., Huang F. J., Lou X. D., Xia F., Sci. China Chem., 2017, 60, 311 |
[46] | Song S. P., Liang Z. Q., Zhang J., Wang L. H., Li G. X., Fan C. H., Angew. Chem. Int. Ed., 2009, 48, 8670 |
[47] | Ge Z. L., Lin M. H., Wang P., Pei H., Yan J., Shi J. Y., Huang Q., He D. N., Fan C.H., Zuo X. L., Anal. Chem., 2014, 86, 2124 |
[48] | Yin B. C., Liu Y. Q., Ye B. C., J. Am. Chem. Soc., 2012, 134, 5064 |
[49] | Shi C., Liu Q., Ma C. P., Zhong W. W., Anal. Chem., 2014, 86, 336 |
[50] | Jiang Y., Li B. L., Milligan J. N., Bhadra S., Ellington A. D., J. Am. Chem. Soc., 2013, 135, 7430 |
[51] | Xu Z. Q., Liao L. L., Chai Y, Q., Wang H. J., Yuan R., Anal. Chem., 2017, 89, 8282 |
[52] | Lizardi P. M., Huang X. H., Zhu Z. R., Ward P. B., Thomas D. C., Ward D. C., Nat. Genet., 1998, 19, 225 |
[53] | Schweitzer B., Roberts S., Grimwade B., Shao W. P., Wang M. M., Fu Q., Shu Q. P., Laroche L., Zhou Z. M., Tchernev V. T., Christiansen J., Velleca M., Kingsmore S. F., Nat. Biotechnol., 2002, 20, 359 |
[54] | Schweitzer B., Wiltshire S., Lambert J., O’Malley S., Kukanskis K., Zhu Z. R., Kingsmore S. F., Lizardi P. M., Ward D. C., PNAS, 2000, 97, 10113 |
[55] | Bi S., Zhang Z. P., Zhu J. J., Chem. Sci., 2013, 4, 1858 |
[56] | Zhao Y. X., Qi L., Chen F., Dong Y. H., Kong Y., Wu Y. Y., Fan C. H., Chem. Commun., 2012, 48, 3354 |
[57] | Yin P., Choi H. M. T., Calvert C. R., Pierce N. A., Nature, 2008, 451, 318 |
[58] | Zheng A. X., Wang J. R., Li J., Song X. R., Chen G. R., Yang H. H., Biosens. Bioelectron., 2012, 36, 217 |
[59] | Hou T., Wang X. Z., Liu X. J., Lu T. T., Liu S. F., Li F., Anal. Chem., 2014, 86, 884 |
[60] | Dirks R. M., Pierce N. A., Proc. Natl. Acad. Sci. USA, 2004, 101, 15275 |
[61] | Huang R. C., Chiu W. J., Li Y. J., Huang C. C., ACS Appl. Mater. Interfaces, 2014, 6, 21780 |
[62] | Sherman W. B., Seeman N. C., Nano Lett., 2004, 4, 1203 |
[63] | Shin J. S., Pierce N. A., J. Am. Chem. Soc., 2004, 126, 10834 |
[64] | Jung C., Allen P. B., Ellington A. D., ACS Nano, 2017, 11, 8047 |
[65] | Bath J., Green S. J., Turberfield A. J., Angew. Chem. Int. Ed., 2005, 44, 4358 |
[66] | Tian Y., He Y., Chen Y., Yin P., Mao C., Angew. Chem. Int. Ed., 2005, 117, 4429 |
[67] | O’Donovan P., Perrett C. M., Zhang X. H., Montaner B., Xu Y. Z., Harwood C. A., McGregor J. M., Walker S. L., Hanaoka F., Karran P., Science, 2005, 309, 1871 |
[68] | You M. X., Chen Y., Zhang X. B., Liu H. P., Wang R. W., Wang K. L., Williams K. R., Tan W. H., Angew. Chem. Int. Ed., 2012, 124, 2507 |
[69] | Wang L. D., Deng R. J., Li J. H., Chem. Sci., 2015, 6, 6777 |
[70] | Cai S. X., Chen M., Liu M. M., He W. H., Liu Z. J., Wu D. Z., Xia Y. K., Yang H. H., Chen J. H., Biosens. Bioelectron., 2016, 85, 184 |
[71] | Shlyahovsky B., Li Y., Lioubashevski O., Elbaz J., Willner I., ACS Nano, 2009, 3, 1831 |
[72] | He Y., Liu D. R., Nature Nanotech., 2010, 5, 778 |
[73] | Shin J. S., Pierce N. A., J. Am. Chem. Soc., 2004, 126, 10834 |
[74] | Thubagere A. J., Li W., Johnson R. F., Chen Z., Doroudi S., Lee Y. L., Izatt G., Wittman S., Srinivas N., Woods D., Winfree E., Qian L., Science, 2017, 357, eaan6558 |
[75] | Ge J., Zhang L. L., Liu S. J., Yu R. Q., Chu X., Anal. Chem., 2014, 86, 1808 |
[76] | Deng R. J., Tang L. H., Tian Q. Q., Wang Y., Lin L., Li J. H., Angew. Chem. Int. Ed., 2014, 53, 2389 |
[77] | Zhang Z., Wang Y. Y., Zhang N. B., Zhang S. S., Chem. Sci., 2016, 7, 4184 |
[78] | Tian W. M., Li P. J., He W. L., Liu C. H., Li Z. P., Biosens. Bioelectron., 2019, 128, 17 |
[79] | Wei Q. M., Huang J., Li J., Wang J. L., Yang X. H., Liu J.B., Wang K. M., Chem. Sci., 2018, 9, 7802 |
[80] | Yue S. Z., Song X. Y., Song W. L., Bi S., Chem. Sci., 2019, 10, 1651 |
[81] | Li D. X., Wu Y. L., Gan C. F., Yuan R., Xiang Y., Nanoscale, 2018, 10, 17623 |
[82] | Liu H. Y., Tian T., Zhang Y. H., Ding L. H., Yu J. H., Yan M., Biosens. Bioelectron., 2017, 89, 710 |
[83] | Zhang Y., Chen Z. W., Tao Y., Wang Z. Z., Ren J. S., Qu X. G., Chem. Commun., 2015, 51, 11496 |
[84] | Li L., Feng J., Liu H. Y., Li Q. L., Tong L. L., Tang B., Chem. Sci., 2016, 7, 1940 |
[85] | Li S. Y., Zhang F., Chen X. M., Cai C. Q., Sensor Actuat B: Chem., 2018, 263, 87 |
[86] | Qu X. M., Xiao M. S., Li F., Lai W., Li L., Zhou Y., Lin C. L., Li Q., Ge Z.L., Wen Y. L., Pei H., Liu G., ACS Appl. Bio. Mater., 2018, 1, 859 |
[87] | Liang C. P., Ma C. Q., Liu H., Guo X. G., Yin B. C., Ye B. C., Angew. Chem. Int. Ed., 2017, 56, 9077 |
[1] | WANG Yue, WANG Jinling, MA Jianxin, ZHANG Yue, XU Na, WANG Xiuli. Multi-functional Photoelectric Sensor Based on a Three-fold Interpenetrated Cd(II) Coordination Polymer for Sensitively Detecting Different Ions [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1105-1110. |
[2] | CHEN Zhangwu and LI Fen. Proton-induced Conversion from Non-Aufbau to Aufbau Electronic Structure of an Organic Radical with Turn-on Fluorescence [J]. Chemical Research in Chinese Universities, 2022, 38(3): 798-802. |
[3] | XU Kai, HUANG Ning. Recent Advances of Covalent Organic Frameworks in Chemical Sensing [J]. Chemical Research in Chinese Universities, 2022, 38(2): 339-349. |
[4] | NIU Junfeng, SUN Haiya, XIA Housheng, ZHU Yinbang, CHEN Jialing, ZHU Chengye, BAI Wei. Visualization of Bulk Polymerization by Fluorescent Probe with Aggregation-induced Emission Characteristics [J]. Chemical Research in Chinese Universities, 2022, 38(2): 500-504. |
[5] | LI Mingfeng, FANG Hongbao, JI Yifan, CHEN Yuncong, HE Weijiang, GUO Zijian. Rational Design of Ratiometric Fe3+ Fluorescent Probes Based on FRET Mechanism [J]. Chemical Research in Chinese Universities, 2022, 38(1): 67-74. |
[6] | CHU Binbin, WANG Houyu, HE Yao. Fluorescent Silicon-based Nanomaterials Imaging Technology in Diseases [J]. Chemical Research in Chinese Universities, 2021, 37(4): 880-888. |
[7] | LU Feng, ZHAO Ting, SUN Xiaojun, WANG Zuqiang, FAN Quli, HUANG Wei. Rare-earth Doped Nanoparticles with Narrow NIR-II Emission for Optical Imaging with Reduced Autofluorescence [J]. Chemical Research in Chinese Universities, 2021, 37(4): 943-950. |
[8] | YUAN Fang, LI Yang, CHEN Zhenjuan, ZHANG Jianjian, NING Lulu, YANG Xiao-Feng, PU Kanyi. Excimer-based Activatable Fluorescent Sensor for Sensitive Detection of Alkaline Phosphatase [J]. Chemical Research in Chinese Universities, 2021, 37(4): 960-966. |
[9] | CHEN Mingyu, XIANG Song, LV Panpan, QI Chunxuan, FENG Hai-Tao, TANG Ben Zhong. A Novel Fluorescence Tool for Monitoring Agricultural Industry Chain Based on AIEgens [J]. Chemical Research in Chinese Universities, 2021, 37(1): 38-51. |
[10] | LIU Wen, ZHANG Yuhuang, QI Ji, QIAN Jun, TANG Ben Zhong. NIR-II Excitation and NIR-I Emission Based Two-photon Fluorescence Lifetime Microscopic Imaging Using Aggregation-induced Emission Dots [J]. Chemical Research in Chinese Universities, 2021, 37(1): 171-176. |
[11] | WANG Yijie, WANG Lei, WANG Haiyu. Investigation on the Relationship Between Carbon Cores and Fluorescence Moieties by Measurement of Fluorescence Anisotropy of CDs with Different Sizes [J]. Chemical Research in Chinese Universities, 2020, 36(5): 894-900. |
[12] | LIU Yuanyuan, LI Yi, ZONG Linghui, ZHANG Jingyi. Comparison of Two Rhodamine-Polyamine Polystyrene Solid-phase Fluorescence Sensors for Hg(II) Detection Based on Theoretical Calculation [J]. Chemical Research in Chinese Universities, 2020, 36(5): 781-786. |
[13] | FU Pengyan, MO Junting, SUN Sisi, YIN Shaoyun, WANG Haiping, PAN Mei. Acid-base Vapor Sensing Enabled by ESIPT-attributed Cd(II) Coordination Polymer with Switchable Luminescence [J]. Chemical Research in Chinese Universities, 2020, 36(5): 755-759. |
[14] | YANG Linlin, MIAO Yanyan, HAN Da. DNA Nanotechnology on Live Cell Membranes [J]. Chemical Research in Chinese Universities, 2020, 36(2): 203-210. |
[15] | WANG Mingyang, DUAN Jialin, DAI Lizhi, XIN Xiaodong, WANG Fangfang, LI Zheng, TIAN Ye. Characterization of 3D DNA Assemblies Using Cryogenic Electron Microscopy [J]. Chemical Research in Chinese Universities, 2020, 36(2): 227-236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||