Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4): 879-885.doi: 10.1007/s40242-022-2088-8
• Reviews • Previous Articles Next Articles
CHANG Kaili, SUN Peng, DONG Xin, ZHU Chunnan, LIU Xiaojun, ZHENG Dongyun, LIU Chao
Received:
2022-03-11
Revised:
2022-04-11
Online:
2022-08-01
Published:
2022-07-01
Contact:
ZHENG Dongyun;LIU Chao
E-mail:dongyun1203@163.com;chaoliu@scuec.edu.cn
Supported by:
CHANG Kaili, SUN Peng, DONG Xin, ZHU Chunnan, LIU Xiaojun, ZHENG Dongyun, LIU Chao. Aptamers as Recognition Elements for Electrochemical Detection of Exosomes[J]. Chemical Research in Chinese Universities, 2022, 38(4): 879-885.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Pegtel D. M., Gould S. J., Annu. Rev. Biochem., 2019, 88, 487 [2] Thery C., Zitvogel L., Amigorena S., Nat. Rev. Immunol., 2002, 2, 569 [3] Kalluri R., LeBleu V. S., Science, 2020, 367, eaau6977 [4] Vlassov A. V., Magdaleno S., Setterquist R., Conrad R., Biochim. Biophys. Acta, Gen. Subj., 2012, 1820, 940 [5] Wu L., Wang Y., Xu X., Liu Y., Lin B., Zhang M., Zhang J., Wan S., Yang C., Tan W., Chem. Rev., 2021, 121, 12035 [6] Cheng N., Du D., Wang X., Liu D., Xu W., Luo Y., Lin Y., Trends Biotechnol., 2019, 37, 1236 [7] Dong Z., Tang C., Zhang Z., Zhou W., Zhao R., Wang L., Xu J., Wu Y., Wu J., Zhang X., Xu L., Zhao L., Fang X., ACS Appl. Bio Mater., 2020, 3, 2560 [8] Wang J., Huang X., Xie J., Han Y., Huang Y., Zhang H., Clin. Chim. Acta, 2021, 518, 142 [9] Min L., Wang B., Bao H., Li X., Zhao L., Meng J., Wang S., Adv. Sci., 2021, 8, e2102789 [10] Shao H. L., Im H., Castro C. M., Breakefield X., Weissleder R., Lee H. H., Chem. Rev., 2018, 118, 1917 [11] Zhang P., Zhou X., He M., Shang Y., Tetlow A. L., Godwin A. K., Zeng Y., Nat. Biomed. Eng., 2019, 3, 438 [12] Im H., Shao H., Park Y. I., Peterson V. M., Castro C. M., Weissleder R., Lee H., Nat. Biotechnol., 2014, 32, 490 [13] Bagheri Hashkavayi A., Cha B. S., Lee E. S., Kim S., Park K. S., Anal. Chem., 2020, 92, 12733 [14] Abd-Ellatief R., Abd-Ellatief M. R., Diagnostics, 2021, 11, 104 [15] Ramadan S., Lobo R., Zhang Y., Xu L., Shaforost O., Kwong Hong Tsang D., Feng J., Yin T., Qiao M., Rajeshirke A., Jiao L. R., Petrov P. K., Dunlop I. E., Titirici M. M., Klein N., ACS Appl. Mater. Interfaces, 2021, 13, 7854 [16] Gajdosova V., Lorencova L., Kasak P., Tkac J., Sensors, 2020, 20, 4022 [17] Xu L., Shoaie N., Jahanpeyma F., Zhao J., Azimzadeh M., Al Jamal K. T., Biosens. Bioelectron., 2020, 161, 112222 [18] Zhu C., Yang G., Li H., Du D., Lin Y., Anal. Chem., 2015, 87, 230 [19] Qin X., Su Y., Tan J., Yuan Q., Chem. Res. Chinese Universities, 2020, 36(2), 164 [20] Wu L., Wang Y., Zhu L., Liu Y., Wang T., Liu D., Song Y., Yang C., ACS Appl. Bio Mater., 2020, 3, 2743 [21] Ozturk M., Nilsen-Hamilton M., Ilgu M., Pharmaceuticals, 2021, 14, 1260 [22] Lin M., Zhang J., Wan H., Yan C., Xia F., ACS Appl. Mater. Interfaces, 2021, 13, 9369 [23] Hasegawa H., Savory N., Abe K., Ikebukuro K., Molecules, 2016, 21, 421 [24] Ni S., Zhuo Z., Pan Y., Yu Y., Li F., Liu J., Wang L., Wu X., Li D., Wan Y., Zhang L., Yang Z., Zhang B. T., Lu A., Zhang G., ACS Appl. Mater. Interfaces, 2021, 13, 9500 [25] Zhuo Z., Yu Y., Wang M., Li J., Zhang Z., Liu J., Wu X., Lu A., Zhang G., Zhang B., Int. J. Mol. Sci., 2017, 18, 1 [26] Li L., Xu S. J., Yan H., Li X. W., Yazd H. S., Li X., Huang T., Cui C., Jiang J. H., Tan W. H., Angew. Chem. Int. Ed., 2021, 60, 2221 [27] Cheng C., Chen Y. H., Lennox K. A., Behlke M. A., Davidson B. L., Mol. Ther. Nucleic Acids, 2013, 2, e67 [28] Guo Z. K., Liu Y., He N. Y., Deng Y., Jin L., Chin. Chem. Lett., 2021, 32, 40 [29] Andreu Z., Yanez-Mo M., Front. Immunol., 2014, 5, 442 [30] Lotvall J., Hill A. F., Hochberg F., Buzas E. I., Di Vizio D., Gardiner C., Gho Y. S., Kurochkin I. V., Mathivanan S., Quesenberry P., Sahoo S., Tahara H., Wauben M. H., Witwer K. W., Thery C., J. Extracell. Vesicles, 2014, 3, 26913 [31] Yi K., Rong Y., Huang L., Tang X., Zhang Q., Wang W., Wu J., Wang F., ACS Sens, 2021, 6, 1418 [32] Esposito C. L., Quintavalle C., Ingenito F., Rotoli D., Roscigno G., Nuzzo S., Thomas R., Catuogno S., de Franciscis V., Condorelli G., Mol. Ther. Nucleic Acids, 2021, 23, 982 [33] Liu C., Jiang W., Tian X., Yang P., Xiao L., Li J., Qiu L., Tu H., Tan W., Anal. Chem., 2019, 91, 6675 [34] Pfeiffer F., Tolle F., Rosenthal M., Brandle G. M., Ewers J., Mayer G., Nat. Protoc., 2018, 13, 1153 [35] Rahman M. M., Li X. B., Lopa N. S., Ahn S. J., Lee J. J., Sensors, 2015, 15, 3801 [36] Pividori M. I., Merkoci A., Alegret S., Biosens. Bioelectron., 2000, 15, 291 [37] Oberhaus F. V., Frense D., Beckmann D., Biosensors, 2020, 10, 45 [38] Josephs E. A., Ye T., J. Am. Chem. Soc., 2012, 134, 10021 [39] Herne T. M., Tarlov M. J., J. Am. Chem. Soc., 1997, 119, 8916 [40] Zhou Q., Rahimian A., Son K., Shin D. S., Patel T., Revzin A., Methods, 2016, 97, 88 [41] Grabowska I., Sharma N., Vasilescu A., Iancu M., Badea G., Boukherroub R., Ogale S., Szunerits S., ACS Omega, 2018, 3, 12010 [42] Wang Q., Vasilescu A., Wang Q., Coffinier Y., Li M. S., Boukherroub R., Szunerits S., ACS Appl. Mater. Interfaces, 2017, 9, 12823 [43] Wang S., Zhang L., Wan S., Cansiz S., Cui C., Liu Y., Cai R., Hong C., Teng I. T., Shi M., Wu Y., Dong Y., Tan W., ACS Nano, 2017, 11, 3943 [44] Pei H., Li F., Wan Y., Wei M., Liu H., Su Y., Chen N., Huang Q., Fan C., J. Am. Chem. Soc., 2012, 134, 11876 [45] Liu Y., Canoura J., Alkhamis O., Xiao Y., ACS Appl. Mater. Interfaces, 2021, 13, 9491 [46] Yang F., Zuo X. L., Fan C. H., Zhang X. E., Natl. Sci.Rev., 2018, 5, 740 [47] Huang R., He L., Xia Y., Xu H., Liu C., Xie H., Wang S., Peng L., Liu Y., Liu Y., He N., Li Z., Small, 2019, 15, 1 [48] Xu H. Y., Liao C., Zuo P., Liu Z. W., Ye B. C., Anal. Chem., 2018, 90, 13451 [49] Yin X., Hou T., Huang B., Yang L., Li F., Chem. Commun., 2019, 55, 13705 [50] Yang Y. B., Yang X. D., Yang Y. J., Yuan Q., Carbon, 2018, 129, 380 [51] Zhang H., Wang Z., Zhang Q., Wang F., Liu Y., Biosens. Bioelectron., 2019, 124/125, 184 [52] Zhang H. X., Wang Z. H., Wang F., Zhang Y. M., Wang H. Y., Liu Y., Anal. Chem., 2020, 92, 5546 [53] Zhou Y. G., Mohamadi R. M., Poudineh M., Kermanshah L., Ahmed S., Safaei T. S., Stojcic J., Nam R. K., Sargent E. H., Kelley S. O., Small, 2016, 12, 727 [54] Liu X., Gao X., Yang L., Zhao Y., Li F., Anal. Chem., 2021, 93, 11792 [55] Zheng D., Liu X., Zhu S., Cao H., Chen Y., Hu S., Microchim. Acta, 2015,182, 2403 [56] Wu Y., Liu C., Liu X., Zhu C., Dang X., Hu S., Zheng D., Anal. Lett.,2021, 54, 2537 [57] Jing L., Xie C., Li Q., Yang M., Li S., Li H., Xia F., Anal. Chem., 2022, 94, 269 [58] Dirks R. M., Pierce N. A., Proc. Natl. Acad. Sci. USA., 2004, 101, 15275 [59] He F., Liu H., Guo X., Yin B. C., Ye B. C., Anal. Chem., 2017, 89, 12968 [60] Yang L., Yin X., An B., Li F., Anal. Chem., 2021, 93, 1709 [61] An Y., Jin T., Zhu Y., Zhang F., He P., Biosens. Bioelectron., 2019, 142, 111503 [62] Dong H., Chen H., Jiang J., Zhang H., Cai C., Shen Q., Anal. Chem., 2018, 90, 4507 [63] Zhao L., Sun R., He P., Zhang X., Anal. Chem., 2019, 91, 14773 [64] Chai H., Miao P., Anal. Chem., 2019, 91, 4953 [65] Luo L., Wang L., Zeng L., Wang Y., Weng Y., Liao Y., Chen T., Xia Y., Zhang J., Chen J., Talanta, 2020, 207, 120298 [66] Roueinfar M., Templeton H. N., Sheng J. A., Hong K. L., Molecules, 2022, 27, 1114 [67] Feng W., Newbigging A. M., Tao J., Cao Y., Peng H., Le C., Wu J., Pang B., Li J., Tyrrell D. L., Zhang H., Le X. C., Chem. Sci., 2021, 12, 4683 [68] Zhao X., Zhang W., Qiu X., Mei Q., Luo Y., Fu W., Anal. Bioanal. Chem., 2020, 412, 601 [69] Xing S., Lu Z., Huang Q., Li H., Wang Y., Lai Y., He Y., Deng M., Liu W., Theranostics, 2020, 10, 10262 [70] Han C., Li W., Li Q., Xing W., Luo H., Ji H., Fang X., Luo Z., Zhang L., Biosens. Bioelectron., 2022, 200, 113922 [71] Ramirez M. I., Amorim M. G., Gadelha C., Milic I., Welsh J. A., Freitas V. M., Nawaz M., Akbar N., Couch Y., Makin L., Coakley G., Nunes D. N., Carter D., Palmisano G., Dias-Neto E., Nanoscale, 2018, 10, 881 [72] Ouerdane Y., Hassaballah M. Y., Nagah A., Ibrahim T. M., Mohamed H. A. H., El-Baz A., Attia M. S., pharmaceuticals, 2022, 15, 1 [73] Li Y. K., Deng J. Q., Han Z. W., Liu C., Tian F., Xu R., Han D., Zhang S. H., Sun J. S., J. Am. Chem. Soc., 2021, 143, 1290 [74] Su J., Chen S., Dou Y., Zhao Z., Jia X., Ding X., Song S., Anal. Chem., 2022. 94, 3235 |
[1] | CHEN Sisi, ZHANG Lei, YUAN Quan, TAN Jie. Current Advances in Aptamer-based Biomolecular Recognition and Biological Process Regulation [J]. Chemical Research in Chinese Universities, 2022, 38(4): 847-855. |
[2] | TANG Tianwei, LIU Yinghuan, JIANG Ying. Recent Progress on Highly Selective and Sensitive Electrochemical Aptamer-based Sensors [J]. Chemical Research in Chinese Universities, 2022, 38(4): 866-878. |
[3] | HU Lingling, LIU Ke, REN Guolan, LIANG Jiangong, WU Yuan. Progress in DNA Aptamers as Recognition Components for Protein Functional Regulation [J]. Chemical Research in Chinese Universities, 2022, 38(4): 894-901. |
[4] | HUANG Qin, LIU Xin, ZHANG Pengge, WU Zhan, ZHAO Zilong. A DNA Nano-train Carrying a Predefined Drug Combination for Cancer Therapy [J]. Chemical Research in Chinese Universities, 2022, 38(4): 928-934. |
[5] | SHEN Congcong, CHEN Yuehua, FENG Beidou, CHI Hongying, ZHANG Hua. Polypyrrole Hollow Nanotubes Loaded with Au and Fe3O4 Nanoparticles for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid [J]. Chemical Research in Chinese Universities, 2022, 38(4): 941-948. |
[6] | LI Duo, WU Chao, TANG Xuehui, ZHANG Yue, WANG Tie. Electrochemical Sensors Applied for In vitro Diagnosis [J]. Chemical Research in Chinese Universities, 2021, 37(4): 803-822. |
[7] | YIN Fangfei, CAO Nan, XIANG Xuelin, FENG Hao, LI Fan, LI Min, XIA Qiang, ZUO Xiaolei. DNA Framework-based Topological Aptamer for Differentiating Subtypes of Hepatocellular Carcinoma Cells [J]. Chemical Research in Chinese Universities, 2021, 37(4): 919-924. |
[8] | LIU Zhenyu, DONG Jinyi, PAN Jiahao, ZHOU Chao, FAN Chunhai, WANG Qiangbin. Catalytic DNA Origami-based Chiral Plasmonic Biosensor [J]. Chemical Research in Chinese Universities, 2021, 37(4): 914-918. |
[9] | YANG Jia, ZHENG Rui, AN Hongwei, WANG Hao. In vivo Self-assembled Peptide Nanoprobes for Disease Diagnosis [J]. Chemical Research in Chinese Universities, 2021, 37(4): 855-869. |
[10] | YUAN Fang, LI Yang, CHEN Zhenjuan, ZHANG Jianjian, NING Lulu, YANG Xiao-Feng, PU Kanyi. Excimer-based Activatable Fluorescent Sensor for Sensitive Detection of Alkaline Phosphatase [J]. Chemical Research in Chinese Universities, 2021, 37(4): 960-966. |
[11] | XIONG Jin'en, LI Shuang, LI Yi, CHEN Yingli, LIU Yu, GAN Junlan, JU Jiahui, XIAN Yaoling, XIONG Xiaohui. Fluorescent Aptamer-Polyethylene Glycol Functionalized Graphene Oxide Biosensor for Profenofos Detection in Food [J]. Chemical Research in Chinese Universities, 2020, 36(5): 787-794. |
[12] | CAO Mengyao, SUN Yueyang, XIAO Mingshu, LI Li, LIU Xiaohui, JIN Hong, PEI Hao. Multivalent Aptamer-modified DNA Origami as Drug Delivery System for Targeted Cancer Therapy [J]. Chemical Research in Chinese Universities, 2020, 36(2): 254-260. |
[13] | QIN Xinyuan, SU Yuanye, TAN Jie, YUAN Quan. Artificial Nucleotide-containing Aptamers Used in Tumor Therapy [J]. Chemical Research in Chinese Universities, 2020, 36(2): 164-170. |
[14] | TIAN Jinmiao, CHEN Sikai, WANG Xiang, LI Juan. Evolution of Artificial Base Pairs with Hydrogen Bond Complementarity [J]. Chemical Research in Chinese Universities, 2020, 36(2): 151-156. |
[15] | WANG Chengke, TAN Rong, LI Jiangyu, ZHANG Zexiang. Double Magnetic Separation-assisted Fluorescence Method for Sensitive Detection of Ochratoxin A [J]. Chemical Research in Chinese Universities, 2019, 35(3): 382-389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||