Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2): 254-260.doi: 10.1007/s40242-019-9273-4
• Articles • Previous Articles Next Articles
CAO Mengyao1, SUN Yueyang1, XIAO Mingshu1, LI Li1, LIU Xiaohui2, JIN Hong2, PEI Hao1
Received:
2019-10-10
Revised:
2019-10-24
Online:
2020-04-01
Published:
2019-10-29
Contact:
PEI Hao
E-mail:peihao@chem.ecnu.edu.cn
Supported by:
CAO Mengyao, SUN Yueyang, XIAO Mingshu, LI Li, LIU Xiaohui, JIN Hong, PEI Hao. Multivalent Aptamer-modified DNA Origami as Drug Delivery System for Targeted Cancer Therapy[J]. Chemical Research in Chinese Universities, 2020, 36(2): 254-260.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Lu Y., Aimetti A. A., Langer R., Gu Z., Nat. Rev. Mater., 2016, 2(1), 16075 |
[2] | Mo R., Jiang T., Di Santo R., Tai W., Gu Z., Nat. Commun., 2014, 5(1), 3364 |
[3] | Suryaprakash S., Lao Y. H., Cho H. Y., Li M., Ji H. Y., Shao D., Hu H., Quek C. H., Huang D., Mintz R. L., Bagó J. R., Hingtgen S. D., Lee K. B., Leong K. W., Nano Lett., 2019, 19(3), 1701 |
[4] | Petros R. A., De Simone J. M., Nat. Rev. Drug. Discov., 2010, 9(8), 615 |
[5] | Davis M. E., Chen Z., Shin D. M., Nat. Rev. Drug. Discov., 2008, 7(9), 771 |
[6] | Shen J. L., Liang L., Xiao M. S., Xie X. D., Wang F., Li Q., Ge Z. L., Li J., Shi J. Y., Wang L. H., Li L., Pei H., Fan C. H., J. Am. Chem. Soc., 2019, 141(30), 11938 |
[7] | Jain R. K., Stylianopoulos T., Nat. Rev. Clin. Oncol., 2010, 7(11), 653 |
[8] | Allen T. M., Nat. Rev. Cancer., 2002, 2(10), 750 |
[9] | Vander Heiden M. G., Nat. Rev. Drug. Discov., 2011, 10(9), 671 |
[10] | Shi J. J., Kantoff P. W., Wooster R., Farokhzad O. C., Nat. Rev. Cancer, 2017, 17(1), 20 |
[11] | Pearce T. R., Shroff K., Kokkoli E., Adv. Mater., 2012, 24(28), 3803 |
[12] | Xiao M., Chandrasekaran A. R., Ji W., Li F., Man T., Zhu C., Shen X., Pei H., Li Q., Li L., ACS Appl. Mater. Inter., 2018, 10(42), 35794 |
[13] | Xiao M., Wang X., Li L., Pei H., Anal. Chem., 2019, 91(17), 11253 |
[14] | Hu Q. Q., Li H., Wang L. H., Gu H. Z., Fan C. H., Chem. Rev., 2019, 119(10), 6459 |
[15] | Han D. R., Pal S., Nangreave J., Deng Z. T., Liu Y., Yan H., Science, 2011, 332(6027), 342 |
[16] | Zhuang X. X., Ma X. W., Xue X. D., Jiang Q., Song L. L., Dai L. R., Zhang C. Q., Jin S. B., Yang K. N., Ding B. Q., Wang P. C., Liang X. J., ACS Nano, 2016, 10(3), 3486 |
[17] | Tang Q., Plank T. N., Zhu T., Yu H., Ge Z., Li Q., Li L., Davis J. T., Pei H., ACS Appl. Mater. Inter., 2019, 11(22), 19743 |
[18] | Xiao M., Lai W., Man T., Chang B., Li L., Chandrasekaran A. R., Pei H., Chem. Rev., 2019, doi: 10.1021/acs.chemrev.9b00121 |
[19] | Su Y. W., Li D., Liu B. Y., Xiao M. S., Wang F., Li L., Zhang X. L., Pei H., Chempluschem, 2019, 84(5), 512 |
[20] | Rothemund P. W. K., Nature, 2006, 440(7082), 297 |
[21] | Zhang Q., Jiang Q., Li N., Dai L. R., Liu Q., Song L. L., Wang J. Y., Li Y. Q., Tian J., Ding B. Q., Du Y., ACS Nano, 2014, 8(7), 6633 |
[22] | Liedl T., Hogberg B., Tytell J., Ingber D. E., Shih W. M., Nat. Nanotechnol., 2010, 5(7), 520 |
[23] | Pei H., Sha R., Wang X., Zheng M., Fan C., Canary J. W., Seeman N. C., J. Am. Chem. Soc., 2019, 141(30), 11923 |
[24] | Zhu G. Z., Zheng J., Song E. Q., Donovan M., Zhang K. J., Liu C., Tan W. H., Proc. Natl. Acad. Sci. USA, 2013, 110(20), 7998 |
[25] | Mei Q. A., Wei X. X., Su F. Y., Liu Y., Youngbull C., Johnson R., Lindsay S., Yan H., Meldrum D., Nano Lett., 2011, 11(4), 1477 |
[26] | Shen X. B., Jiang Q., Wang J. Y., Dai L. R., Zou G. Z., Wang Z. G., Chen W. Q., Jiang W., Ding B. Q., Chem. Commun., 2012, 48(92), 11301 |
[27] | Qi L., Xiao M., Wang X., Wang C., Wang L., Song S., Qu X., Li L., Shi J., Pei H., Anal. Chem., 2017, 89(18), 9850 |
[28] | Jiang Q., Song C., Nangreave J., Liu X. W., Lin L., Qiu D. L., Wang Z. G., Zou G. Z., Liang X. J., Yan H., Ding B. Q., J. Am. Chem. Soc., 2012, 134(32), 13396 |
[29] | Zhang Y. N., Chao J., Liu H. J., Wang F., Su S., Liu B., Zhang L., Shi J. Y., Wang L. H., Huang W., Wang L. H., Fan C. H., Angew. Chem. Int. Ed., 2016, 55(28), 8036 |
[30] | Du Y., Jiang Q., Beziere N., Song L. L., Zhang Q., Peng D., Chi C. W., Yang X., Guo H. B., Diot G., Ntziachristos V., Ding B. Q., Tian J., Adv. Mater., 2016, 28(45), 10000 |
[31] | Lai W., Ren L., Tang Q., Qu X., Li J., Wang L., Li L., Fan C., Pei H., ACS Nano, 2018, 12(7), 7093 |
[32] | Liu J. B., Song L. L., Liu S. L., Jiang Q., Liu Q., Li N., Wang Z. G., Ding B. Q., Nano Lett., 2018, 18(6), 3328 |
[33] | Meng H. M., Liu H., Kuai H. L., Peng R. Z., Mo L. T., Zhang X. B., Chem. Soc. Rev., 2016, 45(9), 2583 |
[34] | Zhu G. Z., Zheng J., Song E. Q., Donovan M., Zhang K. J., Liu C., Tan W. H., Proc. Natl. Acad. Sci. USA, 2013, 110(20), 7998 |
[35] | Xiao M., Zou K., Li L., Wang L., Tian Y., Fan C., Pei H., Angew. Chem. Int. Ed., 2019, 58, 15448 |
[36] | Qi L., Xiao M., Wang F., Wang L., Ji W., Man T., Aldalbahi A., Naziruddin K. M., Periyasami G., Rahaman M., Alrohaili A., Qu X., Pei H., Wang C., Li L., Nanoscale, 2017, 9(37), 14184 |
[37] | Walter H. K., Bauer J., Steinmeyer J., Kuzuya A., Niemeyer C. M., Wagenknecht H. A., Nano Lett., 2017, 17(4), 2467 |
[38] | Lu Z., Wang Y., Xu D., Pang L., Chem. Commun., 2017, 53(5), 941 |
[39] | Man T., Ji W., Liu X., Zhang C., Li L., Pei H., Fan C., ACS Nano, 2019, 13(4), 4826 |
[40] | Yang Y., Han D., Nangreave J., Liu Y., Yan H., ACS Nano, 2012, 6(9), 8209 |
[41] | Hong F., Zhang F., Liu Y., Yan H., Chem. Rev., 2017, 117(20), 12584 |
[42] | Bagalkot V., Farokhzad O. C., Langer R., Jon S., Angew. Chem. Int. Ed., 2006, 45(48), 8149 |
[43] | Mo R., Jiang T., Gu Z., Angew. Chem. Int. Ed., 2014, 53(23), 5815 |
[44] | Song J., Yang X., Jacobson O., Lin L., Huang P., Niu G., Ma Q., Chen X., ACS Nano, 2015, 9(9), 9199 |
[45] | Deng C., Jiang Y., Cheng R., Meng F., Zhong Z., Nano Today, 2012, 7(5), 467 |
[46] | Hu R., Zhang X., Zhao Z., Zhu G., Chen T., Fu T., Tan W., Angew. Chem. Int. Ed., 2014, 53(23), 5821 |
[47] | Zhu G., Hu R., Zhao Z., Chen Z., Zhang X., Tan W., J. Am. Chem. Soc., 2013, 135(44), 16438 |
[48] | Lv Y., Hu R., Zhu G., Zhang X., Mei L., Liu Q., Qiu L., Wu C., Tan W., Nat. Protoc., 2015, 10, 1508 |
[1] | CHEN Sisi, ZHANG Lei, YUAN Quan, TAN Jie. Current Advances in Aptamer-based Biomolecular Recognition and Biological Process Regulation [J]. Chemical Research in Chinese Universities, 2022, 38(4): 847-855. |
[2] | TANG Tianwei, LIU Yinghuan, JIANG Ying. Recent Progress on Highly Selective and Sensitive Electrochemical Aptamer-based Sensors [J]. Chemical Research in Chinese Universities, 2022, 38(4): 866-878. |
[3] | CHANG Kaili, SUN Peng, DONG Xin, ZHU Chunnan, LIU Xiaojun, ZHENG Dongyun, LIU Chao. Aptamers as Recognition Elements for Electrochemical Detection of Exosomes [J]. Chemical Research in Chinese Universities, 2022, 38(4): 879-885. |
[4] | HU Lingling, LIU Ke, REN Guolan, LIANG Jiangong, WU Yuan. Progress in DNA Aptamers as Recognition Components for Protein Functional Regulation [J]. Chemical Research in Chinese Universities, 2022, 38(4): 894-901. |
[5] | HUANG Qin, LIU Xin, ZHANG Pengge, WU Zhan, ZHAO Zilong. A DNA Nano-train Carrying a Predefined Drug Combination for Cancer Therapy [J]. Chemical Research in Chinese Universities, 2022, 38(4): 928-934. |
[6] | YIN Fangfei, CAO Nan, XIANG Xuelin, FENG Hao, LI Fan, LI Min, XIA Qiang, ZUO Xiaolei. DNA Framework-based Topological Aptamer for Differentiating Subtypes of Hepatocellular Carcinoma Cells [J]. Chemical Research in Chinese Universities, 2021, 37(4): 919-924. |
[7] | LIU Zhenyu, DONG Jinyi, PAN Jiahao, ZHOU Chao, FAN Chunhai, WANG Qiangbin. Catalytic DNA Origami-based Chiral Plasmonic Biosensor [J]. Chemical Research in Chinese Universities, 2021, 37(4): 914-918. |
[8] | XIONG Jin'en, LI Shuang, LI Yi, CHEN Yingli, LIU Yu, GAN Junlan, JU Jiahui, XIAN Yaoling, XIONG Xiaohui. Fluorescent Aptamer-Polyethylene Glycol Functionalized Graphene Oxide Biosensor for Profenofos Detection in Food [J]. Chemical Research in Chinese Universities, 2020, 36(5): 787-794. |
[9] | TIAN Jinmiao, CHEN Sikai, WANG Xiang, LI Juan. Evolution of Artificial Base Pairs with Hydrogen Bond Complementarity [J]. Chemical Research in Chinese Universities, 2020, 36(2): 151-156. |
[10] | ZHU Jinjin, SHANG Yingxu, YU Haiyin, LI Na, DING Baoquan. Shape-controllable Synthesis of Functional Nanomaterials on DNA Templates [J]. Chemical Research in Chinese Universities, 2020, 36(2): 171-176. |
[11] | QIN Xinyuan, SU Yuanye, TAN Jie, YUAN Quan. Artificial Nucleotide-containing Aptamers Used in Tumor Therapy [J]. Chemical Research in Chinese Universities, 2020, 36(2): 164-170. |
[12] | YIN Jue, WANG Junke, NIU Renjie, REN Shaokang, WANG Dexu, CHAO Jie. DNA Nanotechnology-based Biocomputing [J]. Chemical Research in Chinese Universities, 2020, 36(2): 219-226. |
[13] | LONG Qipeng, YU Hanyang, LI Zhe. Reconfigurable Plasmonic Nanostructures Controlled by DNA Origami [J]. Chemical Research in Chinese Universities, 2020, 36(2): 296-300. |
[14] | GE Zhilei, LI Qian, FAN Chunhai. Framework Nucleic Acids for Cell Imaging and Therapy [J]. Chemical Research in Chinese Universities, 2020, 36(1): 1-9. |
[15] | WANG Chengke, TAN Rong, LI Jiangyu, ZHANG Zexiang. Double Magnetic Separation-assisted Fluorescence Method for Sensitive Detection of Ochratoxin A [J]. Chemical Research in Chinese Universities, 2019, 35(3): 382-389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||