Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2): 164-170.doi: 10.1007/s40242-019-0033-2
• Reviews • Previous Articles Next Articles
QIN Xinyuan2, SU Yuanye1, TAN Jie1, YUAN Quan1,2
Received:
2019-10-31
Revised:
2019-11-14
Online:
2020-04-01
Published:
2019-11-29
Contact:
TAN Jie, YUAN Quan
E-mail:yuanquan@whu.edu.cn;tanjie0416@hnu.edu.cn
Supported by:
QIN Xinyuan, SU Yuanye, TAN Jie, YUAN Quan. Artificial Nucleotide-containing Aptamers Used in Tumor Therapy[J]. Chemical Research in Chinese Universities, 2020, 36(2): 164-170.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Tian T., Li J., Xie C., Sun Y., Lei H., Liu X., Xia J., Shi J., Wang L., Lu W., Fan C., ACS Applied Materials & Interfaces, 2018, 10(4), 3414 |
[2] | Zeng X., Luo M., Liu G., Wang X., Tao W., Lin Y., Ji X., Nie L., Mei L., Advanced Science, 2018, 5(10), 1800510 |
[3] | Bian Q., Wang W., Wang S., Wang G., ACS Applied Materials & Interfaces, 2016, 8(40), 27360 |
[4] | Wang J., Wang Y., Hu X., Zhu C., Ma Q., Liang L., Li Z., Yuan Q., Analytical Chemistry, 2019, 91(1), 823 |
[5] | Wang J., Shen H., Huang C., Ma Q., Tan Y., Jiang F., Ma C., Yuan Q., Nano Research, 2016, 10(1), 145 |
[6] | Hu X., Wang Y., Tan Y., Wang J., Liu H., Wang Y., Yang S., Shi M., Zhao S., Zhang Y., Yuan Q., Advanced Materials, 2017, 29(15), 1605235 |
[7] | Wang J., Wei Y., Hu X., Fang Y. Y., Li X., Liu J., Wang S., Yuan Q., Journal of the American Chemical Society, 2015, 137(33), 10576 |
[8] | Zhang H., Li B., Sun Z., Zhou H., Zhang S., Chemical Science, 2017, 8(12), 8025 |
[9] | Qiu L., Chen T., Ocsoy I., Yasun E., Wu C., Zhu G., You M., Han D., Jiang J., Yu R., Tan W., Nano Letters, 2015, 15(1), 457 |
[10] | He J., Dong J., Hu Y., Li G., Hu Y., Nanoscale, 2019, 11(13), 6089 |
[11] | Chandrasekaran R., Lee A. S., Yap L. W., Jans D. A., Wagstaff K. M., Cheng W., Nanoscale, 2016, 8(1), 187 |
[12] | Jiang Y., Pan X., Chang J., Niu W., Hou W., Kuai H., Zhao Z., Liu J., Wang M., Tan W., Journal of the American Chemical Society, 2018, 140(22), 6780 |
[13] | Song Y., Tang C., Yin C., Biomaterials, 2018, 150, 1 |
[14] | Ren X., Gelinas A. D., von Carlowitz I., Janjic N., Pyle A. M., Nature Communications, 2017, 8(1), 810 |
[15] | Zhao N., Pei S. N., Qi J., Zeng Z., Iyer S. P., Lin P., Tung C. H., Zu Y., Biomaterials, 2015, 67, 42 |
[16] | Zhang J., Chen R., Fang X., Chen F., Wang Y., Chen M., Nano Research, 2015, 8(1), 201 |
[17] | Cogoi S., Jakobsen U., Pedersen E. B., Vogel S., Xodo L. E., Scientific Reports, 2016, 6, 38468 |
[18] | Setoguchi K., Cui L., Hachisuka N., Obchoei S., Shinkai K., Hyodo F., Kato K., Wada F., Yamamoto T., Harada-Shiba M., Obika S., Nakano K., Molecular Therapy. Nucleic Acids, 2017, 9, 170 |
[19] | Yang Y., Yang X., Yang Y., Yuan Q., Carbon, 2018, 129, 380 |
[20] | Tao W., Zeng X., Wu J., Zhu X., Yu X., Zhang X., Zhang J., Liu G., Mei L., Theranostics, 2016, 6(4), 470 |
[21] | Tagalakis A. D., Maeshima R., Yu-Wai-Man C., Meng J., Syed F., Wu L. P., Aldossary A. M., McCarthy D., Moghimi S. M., Hart S. L., Acta Biomaterialia, 2017, 51, 351 |
[22] | Hwang D. W., Kim H. Y., Li F., Park J. Y., Kim D., Park J. H., Han H. S., Byun J. W., Lee Y. S., Jeong J. M., Char K., Lee D. S., Biomaterials, 2017, 121, 144 |
[23] | Huang K. W., Lai Y. T., Chern G. J., Huang S. F., Tsai C. L., Sung Y. C., Chiang C. C., Hwang P. B., Ho T. L., Huang R. L., Shiue T. Y., Chen Y., Wang S. K., Biomacromolecules, 2018, 19(6), 2330 |
[24] | Li J., Hong C. Y., Wu S. X., Liang H., Wang L. P., Huang G., Chen X., Yang H. H., Shangguan D., Tan W., Journal of the American Chemical Society, 2015, 137(35), 11210 |
[25] | Jing P., Cao S., Xiao S., Zhang X., Ke S., Ke F., Yu X., Wang L., Wang S., Luo Y., Zhong Z., Cancer Letters, 2016, 383(2), 230 |
[26] | Chen D., Li B., Cai S., Wang P., Peng S., Sheng Y., He Y., Gu Y., Chen H., Biomaterials, 2016, 100, 1 |
[27] | Zhang Y., Hou Z., Ge Y., Deng K., Liu B., Li X., Li Q., Cheng Z., Ma P., Li C., Lin J., ACS Applied Materials & Interfaces, 2015, 7(37), 20696 |
[28] | Li F., Mei H., Gao Y., Xie X., Nie H., Li T., Zhang H., Jia L., Biomaterials, 2017, 145, 56 |
[29] | Peng L. H., Zhang Y. H., Han L. J., Zhang C. Z., Wu J. H., Wang X. R., Gao J. Q., Mao Z. W., ACS Applied Materials & Interfaces, 2015, 7(33), 18628 |
[30] | Hili R., Niu J., Liu D. R., Journal of the American Chemical Society, 2013, 135(1), 98 |
[31] | Zhao F., Zhou J., Su X., Wang Y., Yan X., Jia S., Du B., Small, 2017, 13(20), 1603990 |
[32] | Wang R., Lu D., Bai H., Jin C., Yan G., Chemical Science, 2016, 7(3), 2157 |
[33] | Wang R. W., Wang C. M., Cao Y., Zhu Z., Yang C. Y., Chemical Science, 2014, 5(10), 4076 |
[34] | Kimoto M., Yamashige R., Matsunaga K., Yokoyama S., Hirao I., Nature Biotechnology, 2013, 31(5), 453 |
[35] | Matsunaga K. I., Kimoto M., Hirao I., Journal of the American Chemical Society, 2017, 139(1), 324 |
[36] | Biondi E., Lane J. D., Das D., Dasgupta S., Piccirilli J. A., Hoshika S., Bradley K. M., Krantz B. A., Benner S. A., Nucleic. Acids Research, 2016, 44(20), 9565 |
[37] | Labenski V., Suerth J. D., Barczak E., Heckl D., Levy C., Bernadin O., Charpentier E., Williams D. A., Fehse B., Verhoeyen E., Schambach A., Biomaterials, 2016, 97, 97 |
[38] | Hou W., Liu Y., Jiang Y., Wu Y., Cui C., Wang Y., Zhang L., Teng I. T., Tan W., Nanoscale, 2018, 10(23), 10986 |
[39] | Chen W., Liu X., Xiao Y., Tang R., Small, 2015, 11(15), 1775 |
[40] | Khaled S. Z., Cevenini A., Yazdi I. K., Parodi A., Evangelopoulos M., Corbo C., Scaria S., Hu Y., Haddix S. G., Corradetti B., Salvatore F., Tasciotti E., Biomaterials, 2016, 87, 57 |
[41] | Kanlikilicer P., Ozpolat B., Aslan B., Bayraktar R., Gurbuz N., Rodriguez-Aguayo C., Bayraktar E., Denizli M., Gonzalez-Villasana V., Ivan C., Lokesh G. L. R., Amero P., Catuogno S., Haemmerle M., Wu S. Y., Mitra R., Gorenstein D. G., Volk D. E., de Franciscis V., Sood A. K., Lopez-Berestein G., Molecular Therapy. Nucleic Acids, 2017, 9, 251 |
[42] | Zhang F., Correia A., Makila E., Li W., Salonen J., Hirvonen J. J., Zhang H., Santos H. A., ACS Applied Materials & Interfaces, 2017, 9(11), 10034 |
[43] | Abnous K., Danesh N. M., Ramezani M., Yazdian-Robati R., Alibolandi M., Taghdisi S. M., Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13(6), 1933 |
[44] | Li N., Xiang M. H., Liu J. W., Tang H., Jiang J. H., Analytical Chemistry, 2018, 90(21), 12951 |
[45] | Li Y., Liu R., Shi Y., Zhang Z., Zhang X., Theranostics, 2015, 5(6), 583 |
[46] | Ozes A. R., Wang Y., Zong X., Fang F., Pilrose J., Nephew K. P., Scientific Reports, 2017, 7(1), 894 |
[47] | Wang S., Sun C., Li J., Zhang E., Ma Z., Xu W., Li H., Qiu M., Xu Y., Xia W., Xu L., Yin R., Cancer Letters, 2017, 408, 112 |
[48] | Wan J., Geng S., Zhao H., Peng X., Xu J., Wei M., Mao J., Zhou Y., Zhu Q., Zhao Y., Yang X., Nanoscale, 2018, 10(42), 20020 |
[49] | He B., Wang Y., Shao N., Chang H., Cheng Y., Acta Biomaterialia, 2015, 22, 111 |
[50] | Fan X., Sun L., Wu Y., Zhang L., Yang Z., Scientific Reports, 2016, 6, 25799 |
[51] | Matsunaga K., Kimoto M., Hanson C., Sanford M., Young H. A., Hirao I., Scientific Reports, 2015, 5, 18478 |
[52] | Cogoi S., Zorzet S., Rapozzi V., Geci I., Pedersen E. B., Xodo L. E., Nucleic Acids Research, 2013, 41(7), 4049 |
[53] | Xie H., Zhan H., Gao Q., Li J., Zhou Q., Chen Z., Liu Y., Ding M., Xiao H., Liu Y., Huang W., Cai Z., Cancer Letters, 2018, 422, 94 |
[54] | McNamara J. O., Kolonias D., Pastor F., Mittler R. S., Chen L., Giangrande P. H., Sullenger B., Gilboa E., The Journal of Clinical Investigation, 2008, 118(1), 376 |
[55] | Seo Y. E., Suh H. W., Bahal R., Josowitz A., Zhang J., Song E., Cui J., Noorbakhsh S., Jackson C., Bu T., Piotrowski-Daspit A., Bindra R., Saltzman W. M., Biomaterials, 2019, 201, 87 |
[56] | Sun Q., Kang Z., Xue L., Shang Y., Su Z., Sun H., Ping Q., Mo R., Zhang C., Journal of the American Chemical Society, 2015, 137(18), 6000 |
[57] | Durso M., Gaglione M., Piras L., Mercurio M. E., Terreri S., Olivieri M., Marinelli L., Novellino E., Incoronato M., Grieco P., Orsini G., Tonon G., Messere A., Cimmino A., European Journal of Medicinal Chemistry, 2016, 111, 15 |
[58] | Dassie J. P., Liu X. Y., Thomas G. S., Whitaker R. M., Thiel K. W., Stockdale K. R., Meyerholz D. K., McCaffrey A. P., McNamara J. O., Giangrande P. H., Nature Biotechnology, 2009, 27(9), 839 |
[59] | Westerlund K., Vorobyeva A., Mitran B., Orlova A., Tolmachev V., Karlstrom A. E., Altai M., Biomaterials, 2019, 203, 73 |
[60] | Gasparello J., Manicardi A., Casnati A., Corradini R., Gambari R., Finotti A., Sansone F., Scientific Reports, 2019, 9(1), 3036 |
[61] | Li L., Hu X., Zhang M., Ma S., Yu F., Zhao S., Liu N., Wang Z., Wang Y., Guan H., Pan X., Gao Y., Zhang Y., Liu Y., Yang Y., Tang X., Li M., Liu C., Li Z., Mei X., Molecular Therapy. Nucleic Acids, 2017, 8, 169 |
[62] | Gupta A., Quijano E., Liu Y., Bahal R., Scanlon S. E., Song E., Hsieh W. C., Braddock D. E., Ly D. H., Saltzman W. M., Glazer P. M., Molecular Therapy. Nucleic Acids, 2017, 9, 111 |
[63] | Chen W. H., Yang S. S., Fadeev M., Cecconello A., Nechushtai R., Willner I., Nanoscale, 2018, 10(10), 4650 |
[64] | Kratschmer C., Levy M., Molecular Therapy. Nucleic Acids, 2018, 10, 227 |
[65] | Wang K., Yao H., Meng Y., Wang Y., Yan X., Huang R., Acta Biomaterialia, 2015, 16, 196 |
[66] | He X., Chen X., Liu L., Zhang Y., Lu Y., Zhang Y., Chen Q., Ruan C., Guo Q., Li C., Sun T., Jiang C., Advanced Science, 2018, 5(5), 1701070 |
[67] | Li L. L., Xie M., Wang J., Li X., Wang C., Yuan Q., Pang D. W., Lu Y., Tan W., Chemical Communications, 2013, 49(52), 5823 |
[68] | Yang Y., Liu J., Sun X., Feng L., Zhu W., Liu Z., Chen M., Nano Research, 2015, 9(1), 139 |
[69] | Kong L., Qiu J., Sun W., Yang J., Shen M., Wang L., Shi X., Biomaterials Science, 2017, 5(2), 258 |
[70] | Zhan Y., Ma W., Zhang Y., Mao C., Shao X., Xie X., Wang F., Liu X., Li Q., Lin Y., ACS Applied Materials & Interfaces, 2019, 11(17), 15354 |
[71] | Taghavi S., Ramezani M., Alibolandi M., Abnous K., Taghdisi S. M., Cancer Letters, 2017, 400, 1 |
[72] | Yuan Q., Wu Y., Wang J., Lu D., Zhao Z., Liu T., Zhang X., Tan W., Angewandte Chemie, 2013, 52(52), 13965 |
[73] | Pi F., Zhang H., Li H., Thiviyanathan V., Gorenstein D. G., Sood A. K., Guo P., Nanomedicine : Nanotechnology, Biology, and Medicine, 2017, 13(3), 1183 |
[74] | Ma Y., Zhao W., Li Y., Pan Y., Wang S., Zhu Y., Kong L., Guan Z., Wang J., Zhang L., Yang Z., Biomaterials, 2019, 197, 182 |
[75] | Bertucci A., Prasetyanto E. A., Septiadi D., Manicardi A., Brognara E., Gambari R., Corradini R., de Cola L., Small, 2015, 11(42), 5687 |
[1] | CHEN Sisi, ZHANG Lei, YUAN Quan, TAN Jie. Current Advances in Aptamer-based Biomolecular Recognition and Biological Process Regulation [J]. Chemical Research in Chinese Universities, 2022, 38(4): 847-855. |
[2] | TANG Tianwei, LIU Yinghuan, JIANG Ying. Recent Progress on Highly Selective and Sensitive Electrochemical Aptamer-based Sensors [J]. Chemical Research in Chinese Universities, 2022, 38(4): 866-878. |
[3] | CHANG Kaili, SUN Peng, DONG Xin, ZHU Chunnan, LIU Xiaojun, ZHENG Dongyun, LIU Chao. Aptamers as Recognition Elements for Electrochemical Detection of Exosomes [J]. Chemical Research in Chinese Universities, 2022, 38(4): 879-885. |
[4] | HU Lingling, LIU Ke, REN Guolan, LIANG Jiangong, WU Yuan. Progress in DNA Aptamers as Recognition Components for Protein Functional Regulation [J]. Chemical Research in Chinese Universities, 2022, 38(4): 894-901. |
[5] | TU Tingting, HUAN Shuangyan, KE Guoliang, ZHANG Xiaobing. Functional Xeno Nucleic Acids for Biomedical Application [J]. Chemical Research in Chinese Universities, 2022, 38(4): 912-918. |
[6] | HUANG Qin, LIU Xin, ZHANG Pengge, WU Zhan, ZHAO Zilong. A DNA Nano-train Carrying a Predefined Drug Combination for Cancer Therapy [J]. Chemical Research in Chinese Universities, 2022, 38(4): 928-934. |
[7] | YIN Fangfei, CAO Nan, XIANG Xuelin, FENG Hao, LI Fan, LI Min, XIA Qiang, ZUO Xiaolei. DNA Framework-based Topological Aptamer for Differentiating Subtypes of Hepatocellular Carcinoma Cells [J]. Chemical Research in Chinese Universities, 2021, 37(4): 919-924. |
[8] | XIONG Jin'en, LI Shuang, LI Yi, CHEN Yingli, LIU Yu, GAN Junlan, JU Jiahui, XIAN Yaoling, XIONG Xiaohui. Fluorescent Aptamer-Polyethylene Glycol Functionalized Graphene Oxide Biosensor for Profenofos Detection in Food [J]. Chemical Research in Chinese Universities, 2020, 36(5): 787-794. |
[9] | CAO Mengyao, SUN Yueyang, XIAO Mingshu, LI Li, LIU Xiaohui, JIN Hong, PEI Hao. Multivalent Aptamer-modified DNA Origami as Drug Delivery System for Targeted Cancer Therapy [J]. Chemical Research in Chinese Universities, 2020, 36(2): 254-260. |
[10] | TIAN Jinmiao, CHEN Sikai, WANG Xiang, LI Juan. Evolution of Artificial Base Pairs with Hydrogen Bond Complementarity [J]. Chemical Research in Chinese Universities, 2020, 36(2): 151-156. |
[11] | WANG Chengke, TAN Rong, LI Jiangyu, ZHANG Zexiang. Double Magnetic Separation-assisted Fluorescence Method for Sensitive Detection of Ochratoxin A [J]. Chemical Research in Chinese Universities, 2019, 35(3): 382-389. |
[12] | LIU Zhongcheng, ZHANG Yanfen, XIE Yao, SUN Ying, BI Kewei, CUI Zhe, ZHAO Lijian, FAN Wufang. An Aptamer-based Colorimetric Sensor for Streptomycin and Its Application in Food Inspection [J]. Chemical Research in Chinese Universities, 2017, 33(5): 714-720. |
[13] | RAO Xin-yi, ZHANG Jia-jia, CUI Jing, HU Ying, LIU Ting, CHAI Jing-feng, CHENG Gui-fang, HE Pin-gang, FANG Yu-zhi. Au Nanoparticle-DNAzyme Dual Catalyst System for Sensitively Colorimetric Detection of Thrombin [J]. Chemical Research in Chinese Universities, 2013, 29(5): 868-873. |
[14] | LIAO Qie-gen, WANG Jian, LONG Yun-fei and LI Yuan-fang*. Spectrofluorometry of Ions and Small Molecules Based on Conformational Changes of Specific Oligonucleotides with o-Phthalaldehyde-β-mercaptoethanol [J]. Chemical Research in Chinese Universities, 2010, 26(3): 360-365. |
[15] | ZHENG Fan, WU Zai-sheng, ZHANG Song-bai, GUO Meng-meng, CHEN Chen-rui, SHEN Guo-li , YU Ru-qin. Aptamer-based Electrochemical Biosensors for Highly Selective and Quantitative Detection of Adenosine [J]. Chemical Research in Chinese Universities, 2008, 24(2): 138-142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||