Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2): 211-218.doi: 10.1007/s40242-019-0038-x
• Reviews • Previous Articles Next Articles
LI Xue, YANG Donglei, SHEN Luyao, XU Fan, WANG Pengfei
Received:
2019-11-06
Revised:
2019-11-26
Online:
2020-04-01
Published:
2019-11-27
Contact:
WANG Pengfei
E-mail:pengfei.wang@sjtu.edu.cn
Supported by:
LI Xue, YANG Donglei, SHEN Luyao, XU Fan, WANG Pengfei. Programmable Assembly of DNA-protein Hybrid Structures[J]. Chemical Research in Chinese Universities, 2020, 36(2): 211-218.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Seeman N. C., J. Theor. Biol., 1982, 99(2), 237 |
[2] | Seeman N. C., Nano Letters, 2001, 1(1), 22 |
[3] | Yan H., Park S. H., Finkelstein G., Reif J. H., Labean T. H., Science, 2003, 301(5641), 1882 |
[4] | Seeman N. C., Nature, 2003, 421(6921), 427 |
[5] | He Y., Tian Y., Ribbe A. E., Mao C., J. Am. Chem. Soc., 2006, 128(50), 15978 |
[6] | Ke Y., Liu Y., Zhang J., Yan H., J. Am. Chem. Soc., 2006, 128(13), 4414 |
[7] | Li Z., Wei B., Nangreave J., Lin C., Liu Y., Mi Y., Yan H., J. Am. Chem. Soc., 2009, 131(36), 13093 |
[8] | Ke Y., Ong L. L., Shih W. M., Yin P., Science, 2012, 338(6111), 1177 |
[9] | Wei B., Dai M., Yin P., Nature, 2012, 485(7400), 623 |
[10] | Li J., Fan C. H., Pei H., Shi J. Y., Huang Q., Adv. Mater., 2013, 25(32), 4386 |
[11] | Song C., Wang Z. G., Ding B. Q., Small, 2013, 9(14), 2382 |
[12] | Wang P. F., Wu S. Y., Tian C., Yu G. M., Jiang W., Wang G. S., Mao C. D., J. Am. Chem. Soc., 2016, 138(41), 13579 |
[13] | Winfree E., Liu F., Wenzler L. A., Seeman N. C., Nature, 1998, 394(6693), 539 |
[14] | He Y., Ye T., Su M., Zhang C., Ribbe A. E., Jiang W., Mao C., Nature, 2008, 452(7184), 198 |
[15] | Zheng J., Birktoft J. J., Chen Y., Wang T., Sha R., Constantinou P. E., Ginell S. L., Mao C., Seeman N. C., Nature, 2009, 461(7260), 74 |
[16] | Ong L. L., Hanikel N., Yaghi O. K., Grun C., Strauss M. T., Bron P., Lai-Kee-Him J., Schueder F., Wang B., Wang P., Kishi J. Y., Myhrvold C., Zhu A., Jungmann R., Bellot G., Ke Y., Yin P., Nature, 2017, 552(7683), 72 |
[17] | Song J., Li Z., Wang P., Meyer T., Mao C., Ke Y., Science, 2017, 357(6349), eaan3377 |
[18] | Woods D., Doty D., Myhrvold C., Hui J., Zhou F., Yin P., Winfree E., Nature, 2019, 567(7748), 366 |
[19] | Zhang Y., Pan V., Li X., Yang X., Li H., Wang P., Ke Y., Small, 2019, 15(26), e1900228 |
[20] | Rothemund P. W. K., Nature, 2006, 440(7082), 297 |
[21] | Andersen E. S., Dong M., Nielsen M. M., Jahn K., Subramani R., Mamdouh W., Golas M. M., Sander B., Stark H., Cristiano L. P. O., Pedersen J. S., Birkedal V., Besenbacher F., Gothelf K. V., Kjems J., Nature, 2009, 459(7243), 73 |
[22] | Dietz H., Douglas S. M., Shih W. M., Science, 2009, 325(5941), 725 |
[23] | Douglas S. M., Dietz H., Liedl T., Hogberg B., Graf F., Shih W. M., Nature, 2009, 459(7245), 414 |
[24] | Han D., Pal S., Nangreave J., Deng Z., Liu Y., Yan H., Science, 2011, 332(6027), 342 |
[25] | Wang P. F., Ko S. H., Tian C., Hao C. H., Mao C. D., Chem. Commun., 2013, 49(48), 5462 |
[26] | Iinuma R., Ke Y., Jungmann R., Schlichthaerle T., Woehrstein J. B., Yin P., Science, 2014, 344(6179), 65 |
[27] | Zhang F., Jiang S., Wu S., Li Y., Liu Y., Mao C., Nat. Nanotechnol., 2015, 10(9), 779 |
[28] | Wang P., Gaitanaros S., Lee S., Bathe M., Shih W. M., Ke Y., J. Am. Chem. Soc., 2016, 138(24), 7733 |
[29] | Hong F., Zhang F., Liu Y., Yan H., Chem. Rev., 2017, 117(20), 12584 |
[30] | Tikhomirov G., Petersen P., Qian L. L., Nature, 2017, 552(7683), 67 |
[31] | Wang P. F., Meyer T. A., Pan V., Dutta P. K., Ke Y. G., Chem., 2017, 2(3), 359 |
[32] | Zhou K., Dong J., Zhou Y., Dong J., Wang M., Wang Q., Small, 2019, 15(26), e1804044 |
[33] | Mattiroli F., Bhattacharyya S., Dyer P. N., White A. E., Sandman K., Burkhart B. W., Byrne K. R., Lee T., Ahn N. G., Santangelo T. J., Reeve J. N., Luger K., Science, 2017, 357(6351), 609 |
[34] | Gatchalian J., Wang X., Ikebe J., Cox K. L., Tencer A. H., Zhang Y., Burge N. L., Di L., Gibson M. D., Musselman C. A., Poirier M. G., Kono H., Hayes J. J., Kutateladze T. G., Nat. Commun., 2017, 8(1), 1489 |
[35] | Zhou Y. B., Gerchman S. E., Ramakrishnan V., Travers A., Muyldermans S., Nature, 1998, 395(6700), 402 |
[36] | Agback P., Baumann H., Knapp S., Ladenstein R., Hard T., Nat. Struct. Biol., 1998, 5(7), 579 |
[37] | Driessen R. P. C., Meng H., Suresh G., Shahapure R., Lanzani G., Priyakumar U. D., White M. F., Schiessel H., Van Noort J., Dame R. T., Nucleic Acids Res., 2013, 41(1), 196 |
[38] | Robinson H., Gao Y. G., McCrary B. S., Edmondson S. P., Shriver J. W., Wang A. H. J., Nature, 1998, 392(6672), 202 |
[39] | Durniak K. J., Bailey S., Steitz T. A., Science, 2008, 322(5901), 553 |
[40] | Knott G. J., Doudna J. A., Science, 2018, 361(6405), 866 |
[41] | Nishimasu H., Ran F. A., Hsu P. D., Konermann S., Shehata S. I., Dohmae N., Ishitani R., Zhang F., Nureki O., Cell, 2014, 156(5), 935 |
[42] | Liszczak G. P., Brown Z. Z., Kim S. H., Oslund R. C., David Y., Muir T. W., P. Natl. Acad. Sci. USA, 2017, 114(4), 681 |
[43] | Deng W. L., Shi X. H., Tjian R., Lionnet T., Singer R. H., P. Natl. Acad. Sci. USA, 2015, 112(38), 11870 |
[44] | Fu Y., Rocha P. P., Luo V. M., Raviram R., Deng Y., Mazzoni E. O., Skok J. A., Nat. Commun., 2016, 7, 11707 |
[45] | Fu J., Yang Y. R., Dhakal S., Zhao Z., Liu M., Zhang T., Walter N. G., Yan H., Nat. Protoc., 2016, 11(11), 2243 |
[46] | Fu J., Liu M., Liu Y., Woodbury N. W., Yan H., J. Am. Chem. Soc., 2012, 134(12), 5516 |
[47] | McMillan J. R., Mirkin C. A., J. Am. Chem. Soc., 2018, 140(22), 6776 |
[48] | Henning-Knechtel A., Knechtel J., Magzoub M., Nucleic. Acids Res., 2017, 45(21), 12057 |
[49] | Zhao Z., Zhang M., Hogle J. M., Shih W. M., Wagner G., Nasr M. L., J. Am. Chem. Soc., 2018, 140(34), 10639 |
[50] | Liang S. I., McFarland J. M., Rabuka D., Gartner Z. J., J. Am. Chem. Soc., 2014, 136(31), 10850 |
[51] | Ke G. L., Liu M. H., Jiang S. X., Qi X. D., Yang Y. R., Wootten S., Zhang F., Zhu Z., Liu Y., Yang C. J., Yan H., Angew. Chem. Int. Ed., 2016, 55(26), 7483 |
[52] | Marth G., Hartley A. M., Reddington S. C., Sargisson L. L., Parcollet M., Dunn K. E., Jones D. D., Stulz E., ACS Nano, 2017, 11(5), 5003 |
[53] | Rosen C. B., Kodal A. L., Nielsen J. S., Schaffert D. H., Scavenius C., Okholm A. H., Voigt N. V., Enghild J. J., Kjems J., Torring T., Gothelf K. V., Nat. Chem., 2014, 6(9), 804 |
[54] | Wollman A. J., Sanchez-Cano C., Carstairs H. M., Cross R. A., Turberfield A. J., Nat. Nanotechnol., 2014, 9(1), 44 |
[55] | Sagredo S., Pirzer T., Rafat A. A., Goetzfried M. A., Moncalian G., Simmel F. C., De La Cruz F., Angew. Chem. Int. Ed., 2016, 55(13), 4348 |
[56] | Xiong X., Liu H., Zhao Z., Altman M. B., Lopez-Colon D., Yang C. J., Chang L. J., Liu C., Tan W., Angew. Chem. Int. Ed. Engl., 2013, 52(5), 1472 |
[57] | Vinkenborg J. L., Mayer G., Famulok M., Angew. Chem. Int. Ed., 2012, 51(36), 9176 |
[58] | Lovrinovic M., Seidel R., Wacker R., Schroeder H., Seitz O., Engelhard M., Goody R. S., Niemeyer C. M., Chem. Commun.(Camb), 2003, (7), 822 |
[59] | Duckworth B. P., Chen Y., Wollack J. W., Sham Y., Mueller J. D., Taton T. A., Distefano M. D., Angew. Chem. Int. Ed., 2007, 46(46), 8819 |
[60] | Valero J., Pal N., Dhakal S., Walter N. G., Famulok M., Nat. Nanotechnol., 2018, 13(6), 496 |
[61] | Li S., Jiang Q., Liu S., Zhang Y., Tian Y., Song C., Wang J., Zou Y., Anderson G. J., Han J. Y., Chang Y., Liu Y., Zhang C., Chen L., Zhou G., Nie G., Yan H., Ding B., Zhao Y., Nat. Biotechnol., 2018, 36(3), 258 |
[62] | Nielsen T. B., Thomsen R. P., Mortensen M. R., Kjems J., Nielsen P. F., Nielsen T. E., Kodal A. L. B., Clo E., Gothelf K. V., Angew. Chem. Int. Ed., 2019, 58(27), 9068 |
[63] | Jiang T., Meyer T. A., Modlin C., Zuo X., Conticello V. P., Ke Y., J. Am. Chem. Soc., 2017, 139(40), 14025 |
[64] | Lacroix A., Edwardson T. G. W., Hancock M. A., Dore M. D., Sleiman H. F., J. Am. Chem. Soc., 2017, 139(21), 7355 |
[65] | Dong Y., Chen S., Zhang S., Sodroski J., Yang Z., Liu D., Mao Y., Angew. Chem. Int. Ed., 2018, 57(8), 2072 |
[66] | Hernandez-Garcia A., Estrich N. A., Werten M. W., Van Der Maarel J. R., Labean T. H., De Wolf F. A., Cohen Stuart M. A., De Vries R., ACS Nano, 2017, 11(1), 144 |
[67] | Thompson R. E., Stevens A. J., Muir T. W., Nat. Chem., 2019, 11(8), 737 |
[68] | Zhang C., Tian C., Guo F., Liu Z., Jiang W., Mao C., Angew. Chem. Int. Ed., 2012, 51(14), 3382 |
[69] | Udomprasert A., Bongiovanni M. N., Sha R., Sherman W. B., Wang T., Arora P. S., Canary J. W., Gras S. L., Seeman N. C., Nat. Nanotechnol., 2014, 9(7), 537 |
[70] | Mao X. H., Li K., Liu M. M., Wang X. Y., Zhao T. X., An B. L., Cui M. K., Li Y. F., Pu J. H., Li J., Wang L. H., Lu T. K., Fan C. H., Zhong C., Nat. Commun., 2019, 10, 1395 |
[71] | Zhou K., Ke Y., Wang Q., J. Am. Chem. Soc., 2018, 140(26), 8074 |
[72] | Jin J., Baker E. G., Wood C. W., Bath J., Woolfson D. N., Turberfield A. J., ACS Nano, 2019, 13, 9927 |
[73] | Praetorius F., Dietz H., Science, 2017, 355(6331), eaam5488 |
[74] | Raz M. H., Hidaka K., Sturla S. J., Sugiyama H., Endo M., J. Am. Chem. Soc., 2016, 138(42), 13842 |
[75] | Funke J. J., Ketterer P., Lieleg C., Schunter S., Korber P., Dietz H., Sci. Adv., 2016, 2(11), e1600974 |
[76] | Ke Y., Meyer T., Shih W. M., Bellot G., Nat. Commun., 2016, 7, 10935 |
[77] | Grossi G., Jepsen M. D. E., Kjems J., Andersen E. S., Nat. Commun., 2017, 8(1), 992 |
[78] | Auvinen H., Zhang H., Nonappa, Kopilow A., Niemela E. H., Nummelin S., Correia A., Santos H. A., Linko V., Kostiainen M. A., Adv. Healthc. Mater., 2017, 6(18), 1700692 |
[79] | Schaffert D. H., Okholm A. H., Sorensen R. S., Nielsen J. S., Torring T., Rosen C. B., Kodal A. L., Mortensen M. R., Gothelf K. V., Kjems J., Small, 2016, 12(19), 2634 |
[80] | Mao J. Y., Li H. W., Wei S. C., Harroun S. G., Lee M. Y., Lin H. Y., Chung C. Y., Hsu C. H., Chen Y. R., Lin H. J., Huang C. C., ACS Appl. Mater. Interfaces, 2017, 9(51), 44307 |
[1] | GAO Huimin, SHI Rui, ZHU Youliang, QIAN Hujun and LU Zhongyuan. Coarse-grained Dynamics Simulation in Polymer Systems: from Structures to Material Properties [J]. Chemical Research in Chinese Universities, 2022, 38(3): 653-670. |
[2] | YANG Miao, WANG Wenjing, SU Kongzhao, YUAN Daqiang. Dimeric Calix[4]resorcinarene-based Porous Organic Cages for CO2/CH4 Separation [J]. Chemical Research in Chinese Universities, 2022, 38(2): 428-432. |
[3] | QIAO Junyi, LIU Xinyao, ZHANG Lirong, LIU Yunling. Self-assembly of 3p-Block Metal-based Metal-Organic Frameworks from Structural Perspective [J]. Chemical Research in Chinese Universities, 2022, 38(1): 31-44. |
[4] | FENG Enduo, TIAN Yang. Surface-enhanced Raman Scattering of Self-assembled Superstructures [J]. Chemical Research in Chinese Universities, 2021, 37(5): 989-1007. |
[5] | Andy Shun-Hoi CHEUNG, Sammual Yu-Lut LEUNG, Franky Ka-Wah HAU, Vivian Wing-Wah YAM. Supramolecular Self-assembly of Amphiphilic Alkynyl-platinum(II) 2,6-Bis(N-alkylbenzimidazol-2'-yl) pyridine Complexes [J]. Chemical Research in Chinese Universities, 2021, 37(5): 1079-1084. |
[6] | HAN Lin, WANG Yuang, TANG Wantao, LIU Jianbing, DING Baoquan. Bioimaging Based on Nucleic Acid Nanostructures [J]. Chemical Research in Chinese Universities, 2021, 37(4): 823-828. |
[7] | REN Yiqing, LIU Xinlong, GE Huan, GUO Yuanyuan, ZHANG Qiushuang, XIE Miao, WANG Ping, ZHU Xinyuan, ZHANG Chuan. A Combinatorial Approach Based on Nucleic Acid Assembly and Electrostatic Compression for siRNA Delivery [J]. Chemical Research in Chinese Universities, 2021, 37(4): 906-913. |
[8] | YANG Jia, ZHENG Rui, AN Hongwei, WANG Hao. In vivo Self-assembled Peptide Nanoprobes for Disease Diagnosis [J]. Chemical Research in Chinese Universities, 2021, 37(4): 855-869. |
[9] | LIU Zhiyu, LIANG Gaolin, ZHAN Wenjun. In situ Activatable Peptide-based Nanoprobes for Tumor Imaging [J]. Chemical Research in Chinese Universities, 2021, 37(4): 889-899. |
[10] | LI Lun, XUE Xiaoxia, SUN Yimeng, ZHAO Wuduo, LI Tiesheng, LIU Minghua, WU Yangjie. Self-assembly Palladacycle Thiophene Imine Monolayer-Investigating on Catalytic Activity and Mechanism for Coupling Reaction [J]. Chemical Research in Chinese Universities, 2020, 36(5): 821-828. |
[11] | ZHANG Junjie, WANG Can, DUAN Ruomeng, PENG Chencheng, YANG Biao, CAO Nan, ZHANG Haiming, CHI Lifeng. Two-dimensional Molecular Phase Transition of Alkylated-TDPB on Au(111) and Cu(111) Surfaces [J]. Chemical Research in Chinese Universities, 2020, 36(4): 685-689. |
[12] | LIU Shengtang, YANG Miao, LIU Cheng, TIAN Bailin, DING Mengning. Superlattice Structure from Re-stacked NiFe Layer Double Hydroxides for Oxygen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2020, 36(4): 680-684. |
[13] | LI Tao, DUAN Ruilin, DUAN Zhijuan, HUANG Fujian, XIA Fan. Fluorescence Signal Amplification Strategies Based on DNA Nanotechnology for miRNA Detection [J]. Chemical Research in Chinese Universities, 2020, 36(2): 194-202. |
[14] | YANG Linlin, MIAO Yanyan, HAN Da. DNA Nanotechnology on Live Cell Membranes [J]. Chemical Research in Chinese Universities, 2020, 36(2): 203-210. |
[15] | WANG Mingyang, DUAN Jialin, DAI Lizhi, XIN Xiaodong, WANG Fangfang, LI Zheng, TIAN Ye. Characterization of 3D DNA Assemblies Using Cryogenic Electron Microscopy [J]. Chemical Research in Chinese Universities, 2020, 36(2): 227-236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||