Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2): 225-236.doi: 10.1007/s40242-024-3290-7
• Reviews • Previous Articles Next Articles
ZHANG Xia1, LI Guocheng1, PAN Wei1, LI Na1, LI Yanhua1, TANG Bo1,2
Received:
2023-12-31
Revised:
2024-01-29
Online:
2024-04-01
Published:
2024-03-27
Contact:
LI Na lina@sdnu.edu.cn;LI Yanhua liyanhua@sdnu.edu.cn
Supported by:
ZHANG Xia, LI Guocheng, PAN Wei, LI Na, LI Yanhua, TANG Bo. Fluorescent Probes for Cysteine and Cysteine Oxidation Imaging[J]. Chemical Research in Chinese Universities, 2024, 40(2): 225-236.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Nagendraraj T., Priya S. V., Annaraj J., Sagadevan S., Coord. Chem. Rev., 2023, 495, 215368 [2] Tan X., Ji K., Wang X., Yao R., Han G., Villamena F. A., Zweier J. L., Song Y., Rockenbauer A., Liu Y., Angew. Chem. Int. Ed., 2020, 59, 928 [3] Yin G.-X., Niu T.-T., Gan Y.-B., Yu T., Yin P., Chen H.-M., Zhang Y.-Y., Li H.-T., Yao S.-Z., Angew. Chem. Int. Ed., 2018, 57, 4991 [4] Zhang M., Bi H., LI C., Du Y., Wei L., Biol Trace Elem Res., 2018 185, 509 [5] Zhang T., Bauer C., Newman A. C., Uribe A. H., Athineos D., Blyth K., Maddocks O. D. K., Nat. Metab., 2020, 2, 1062 [6] Niu L.-Y., Chen Y.-Z., Zheng H.-R., Wu L.-Z., Tung C.-H., Yang Q.-Z., Chem. Soc. Rev., 2015, 44, 6143 [7] Bin P., Huang R., Zhou X, BioMed Res. Int., 2017, 2017, 9584932 [8] Li D., Ding Z., Du K., Ye X., Cheng S., Oxidative Med. Cell. Longev., 2021, 2021, 5583215 [9] Haque T., Eaves D. J., Lin Z., Zampronio C. G., Cooper H. J., Bosch M., Smirnoff N., Franklin-Tong V. E., Plant Physiol., 2020, 183, 1391 [10] Chauvin J.-P. R., Pratt D. A., Angew. Chem. Int. Ed., 2017, 56, 6255 [11] van Montfort R. L. M., Congreve M., Tisi D., Carr R., Jhoti H., Nature, 2003, 423, 773 [12] Forman H. J., Zhang H., Nat. Rev. Drug Discov., 2021 20, 689 [13] Dou W.-T., Han H.-H., Sedgwick A. C., Zhu G.-B., Zang Y., Yang X.-R., Yoon J., James T. D., Li J., He X.-P., Sci. Bull., 2022, 67, 853 [14] Wu X., Shi W., Li X., Ma H., Acc. Chem. Res., 2019, 52, 1892 [15] Chi W., Chen J., Liu W., Wang C., Qi Q., Qiao Q., Tan T. M., Xiong K., Liu X., Kang K., Chang Y.-T., Xu Z., Liu X., J. Am. Chem. Soc., 2020, 142, 6777 [16] Abeywickrama C. S., Chem. Commun., 2022, 58, 9855 [17] Zhang X., Hu Y., Yang X., Tang Y., Han S., Kang A., Deng H., Chi Y., Zhu D., Lu Y., Biosens. Bioelectron., 2019, 138, 111314 [18] Wang H., Li Q., Alam P., Bai H., Bhalla V., Bryce M. R., Cao M., Chen C., Chen S., Chen X., Chen Y., Chen Z., Dang D., Ding D., Ding S., Duo Y., Gao M., He W., He X., Hong X., Hong Y., Hu J.-J., Hu R., Huang X., James T. D., Jiang X., Konishi G.-I., Kwok R. T. K., Lam J. W. Y., Li C., Li H., Li K., Li N., Li W.-J., Li Y., Liang X.-J., Liang Y., Liu B., Liu G., Liu X., Lou X., Lou X.-Y., Luo L., McGonigal P. R., Mao Z.-W., Niu G., Owyong T. C., Pucci A., Qian J., Qin A., Qiu Z., Rogach A. L., Situ B., Tanaka K., Tang Y., Wang B., Wang D., Wang J., Wang W., Wang W.-X., Wang W.-J., Wang X., Wang Y.-F., Wu S., Wu Y., Xiong Y., Xu R., Yan C., Yan S., Yang H.-B., Yang L.-L., Yang M., Yang Y.-W., Yoon J., Zang S.-Q., Zhang J., Zhang P., Zhang T., Zhang X., Zhang X., Zhao N., Zhao Z., Zheng J., Zheng L., Zheng Z., Zhu M.-Q., Zhu W.-H., Zou H., Tang B. Z., ACS Nano, 2023, 17, 14347 [19] Duan Z., Zhu Y., Yang Y., He Z., Liu J., Li P., Wang H., Tang B., ChemistryOpen, 2019, 8, 316 [20] Fan W., Huang X., Shi X., Wang Z., Lu Z., Fan C., Bo Q., Spectrochim. Acta Part A, 2017, 173, 918 [21] Li S.-J., Fu Y.-J., Li C.-Y., Li Y.-F., Yi L.-H., Ou-Yang J., Anal. Chim. Acta, 2017, 994, 73 [22] Yu Y., Yang J., Xu X., Jiang Y., Wang B., Sens. Actuators B: Chem., 2017, 251, 902 [23] Chen Z., Sun Q., Yao Y., Fan X., Zhang W., Qian J., Biosens. Bioelectron., 2017, 91, 553 [24] Tong H., Zhao J., Li X., Zhang Y., Ma S., Lou K., Wang W., Chem. Commun., 2017, 53, 3583 [25] Pal A., Karmakar M., Bhatta S. R., Thakur A., Coord. Chem. Rev., 2021, 448, 214167 [26] Li S., Song D., Huang W., Li Z., Liu Z., Anal. Chem., 2020, 92, 2802 [27] Zhang Y., Wang X., Bai X., Li P., Su D., Zhang W., Zhang W., Tang B., Anal. Chem., 2019, 91, 8591 [28] Wang X., Zha J., Zhang W., Zhang W., Tang B., Analyst, 2020, 145, 6119 [29] Chen Z., Wang B., Liang Y., Shi L., Cen X., Zheng L., Liang E., Huang L., Cheng K., Anal. Chem., 2022, 94, 10737 [30] He L., Yang X., Xu K., Lin W., Anal. Chem., 2017, 89, 9567 [31] Bai Y., Wu M.-X., Ma Q.-J., Wang C.-Y., Sun J.-G., Tian M.-J., Li J.-S., New J. Chem., 2019, 43, 14763 [32] Niu G., Zhang R., Shi X., Park H., Xie S., Kwok R. T. K., Lam J. W. Y., Tang B. Z., TrAC Trends in Anal. Chem., 2020, 123, 115769 [33] Jiang G., Liu X., Chen Q., Zeng G., Wu Y., Dong X., Zhang G., Li Y., Fan X., Wang J., Sens. Actuators B: Chem., 2017, 252, 712 [34] Cai Y., Fang J., Zhu H., Qin W., Cao Y., Yu H., Shao G., Liu Y., Liu W., Sens. Actuators B: Chem., 2020, 303, 127214 [35] Fang Z., Chen D., Xu J., Wang J., Li S., Tian X., Tian Y., Zhang Q., Anal. Chem., 2022, 94, 14769 [36] Maniam S., Higginbotham H. F., Bell T. D. M., Langford S. J., Chem. Eur. J., 2019, 25, 7044 [37] Jia Z., Shi C., Yang X., Zhang J., Sun X., Guo Y., Ying X., Compr. Rev. Food Sci. Food Saf., 2023, 22, 4644 [38] Algar W. R., Massey M., Rees K., Higgins R., Krause K. D., Darwish G. H., Peveler W. J., Xiao Z., Tsai H.-Y., Gupta R., Lix K., Tran M. V., Kim H., Chem. Rev., 2021, 121, 9243 [39] Wagner A. M., Knipe J. M., Orive G., Peppas N. A., Acta Biomater., 2019, 94, 44 [40] Montalti M., Cantelli A., Battistelli G., Chem. Soc. Rev., 2015, 44, 4853 [41] Gu T., Zou W., Gong F., Xia J., Chen C., Chen X., Biosens. Bioelectron., 2018, 100, 79 [42] Li H., Xu T., Zhang Z., Chen J., She M., Ji Y., Zheng B., Yang Z., Zhang S., Li J., Chem. Eng. J., 2023, 453, 139722 [43] Wu Y., Ali M. R. K., Chen K., Fang N., El-Sayed M. A., Nano Today, 2019, 24, 120 [44] Chang H.-C., Chang Y.-F., Fan N.-C., Ho J.-A. A., ACS Appl. Mater. Interfaces, 2014, 6, 18824 [45] Vesali-Naseh M., Mortazavi Y., Khodadadi A. A., Parsaeian P., Moosavi-Movahedi A. A., Sens. Actuators B: Chem., 2013, 188, 488 [46] Jouha J., Xiong H., Small, 2021, 17, 2105439 [47] Tang Z., Lin Z., Li G., Hu Y., Anal. Chem., 2017, 89, 4238 [48] Deng J., Lu Q., Hou Y., Liu M., Li H., Zhang Y., Yao S., Anal. Chem., 2015, 87, 2195 [49] Yan F., Shi D., Zheng T., Yun K., Zhou X., Chen L., Sens. Actuators B: Chem., 2016, 224, 926 [50] Liang Y.-C., Zhao Q., Wu X.-Y., Li Z., Lu Y.-J., Liu Q., Dong L., Shan C.-X., J. Alloys Compd., 2019, 788, 615 [51] Niu Y., Chen Z., Jiang Z., Yang Y., Liu G., Cheng X., Jiang Z., Zhang G., Tong L., Tang B, ACS Chem. Biol., 2023, 18, 1351 [52] Crane E. J., Vervoort J., Claiborne A., Biochemistry, 1997, 36, 8611 [53] Benitez L. V., Allison W. S., J. Biol. Chem., 1974, 249, 6234 [54] Poole L. B., Klomsiri C., Knaggs S. A., Furdui C. M., Nelson K. J., Thomas M. J., Fetrow J. S., Daniel L. W., King S. B., Bioconjugate Chem., 2007, 18, 2004 [55] Cilibrizzi A., Fedorova M., Collins J., Leatherbarrow R., Woscholski R., Vilar R., Dalton Trans., 2017, 46, 6994 [56] Cilibrizzi A., Terenghi M., Fedorova M., Woscholski R., Klug D., Vilar R., Sens. Actuators B Chem., 2017, 248, 437 [57] Gao Y., Sun R., Zhao M., Ding J., Wang A., Ye S., Zhang Y., Mao Q., Xie W., Ma G., Shi H., Anal. Chem., 2020, 92, 6977 [58] Cheng X., Zhou X., Xu J., Sun R., Xia H., Ding J., Chin Y. E., Chai Z., Shi H., Gao M., Anal. Chem., 2021, 93, 9277 [59] Lyu Y., Zeng J., Jiang Y., Zhen X., Wang T., Qiu S., Lou X., Gao M., Pu K., ACS Nano, 2018, 12, 1801 [60] Lyu Y., Zhen X., Miao Y., Pu K., ACS Nano, 2017, 11, 358 [61] Ding J., Mao Q., Zhao M., Gao Y., Wang A., Ye S., Wang X., Xie W., Shi H., Nanoscale, 2020, 12, 22963 [62] Micovic K., Satkunarajah T., Carnet A., Hurst M., Viirre R., Olson M. F., Current Protocols, 2022, 2, e559 [63] Alcock L. J., Oliveira B. L., Deery M. J., Pukala T. L., Perkins M. V., Bernardes G. J. L., Chalker J. M., ACS Chem Biol., 2019, 14, 594 [64] Scinto S. L., Ekanayake O., Seneviratne U., Pigga J. E., Boyd S. J., Taylor M. T., Liu J., am Ende C. W., Rozovsky S., Fox J. M., J. Am. Chem. Soc., 2019, 141, 10932 [65] McGarry D. J., Shchepinova M. M., Lilla S., Hartley R. C., Olson M. F., ACS Chem. Biol., 2016, 11, 3300 [66] Li M., Wang B., Li M., Li X., Wang L., Li N., Rao L., Wan C., Liu C., Liu C., Sens. Actuators B: Chem., 2022, 354, 131235 [67] Ferreira R. B., Fu L., Jung Y., Yang J., Carroll K. S., Nat. Commun., 2022, 13, 5522 [68] Urmey A. R., Zondlo N. J., Free Radical Bio. Med., 2020, 152, 166 [69] Kang Q., Xiao Y., Hu W., Wang Y., J. Mater. Chem. C, 2018, 6, 12529 [70] Huang X., Zhang S., Liu Z., Cao W., Li G., Gao W., Tang B., Anal. Chem., 2023, 95, 1967 |
[1] | XIE Yuxin, QIN Zuojia, QIAN Ming, REN Tianbing, YUAN Lin. Progress and Challenges of Water-soluble NIR-II Organic Fluorophores for Fluorescence Imaging In vivo [J]. Chemical Research in Chinese Universities, 2024, 40(2): 190-201. |
[2] | QI Zheng, LIU Chunguang. Ultrasound Treatment Reducing the Production of VBNC Bacteria in the Process of Chlorine Disinfection: Efficiency and Mechanisms [J]. Chemical Research in Chinese Universities, 2023, 39(3): 425-433. |
[3] | LIU Junxue, WANG Yufei, MA Wenyan, ZONG Siyu, LI Jiyang. Biomass-based Carbon Dots as Peroxidase Mimics for Colorimetric Detection of Glutathione and L-Cysteine [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1446-1452. |
[4] | WANG Bingya, GUO Xiaomei, LIU Zuodong, WU Yongquan, HOU Ji-Ting. A Long-wavelength Emissive Phenothiazine Derived Fluorescent Probe for Detecting HOCl Upregulation in 5-FU Stimulated Living Cells [J]. Chemical Research in Chinese Universities, 2022, 38(2): 609-615. |
[5] | LI Mingfeng, FANG Hongbao, JI Yifan, CHEN Yuncong, HE Weijiang, GUO Zijian. Rational Design of Ratiometric Fe3+ Fluorescent Probes Based on FRET Mechanism [J]. Chemical Research in Chinese Universities, 2022, 38(1): 67-74. |
[6] | PAN Quan, MA Feiyan, PU Xinqing, ZHAO Manyi, WU Qiling, ZHAO Na, YANG Jun, TANG Ben Zhong. A Novel Fluorescent Probe for ATP Detection Based on Synergetic Effect of Aggregation-induced Emission and Counterion Displacement [J]. Chemical Research in Chinese Universities, 2021, 37(1): 166-170. |
[7] | XUE Longqi, FENG Yusha, SONG Yan, WANG Rui, LIU Dahai, DU Jianshi, YANG Qingbiao, LI Yaoxian. A Highly Selective and Sensitive Ratiometric Fluorescent Probe for Hypochlorite and Its Application [J]. Chemical Research in Chinese Universities, 2018, 34(4): 536-540. |
[8] | MI Zhiming, CHEN Yao, CHEN Xiaodong, YAN Liuqing, GU Qiang, ZHANG Hanqi, CHEN Chunhai, ZHANG Yumin. Synthesis of Highly Sensitive Fluorescent Probe Based on Tetrasubstituted Imidazole and Its Application for Selective Detection of Ag+ Ion in Aqueous Media [J]. Chemical Research in Chinese Universities, 2018, 34(3): 369-374. |
[9] | WANG Yan'en, LI Xueyan, CHEN Hua, ZHU Mengyuan, LI Xiaoliu. Synthesis of Bisboronic Acids and Their Selective Recognition of Sialyl Lewis X Antigen [J]. Chemical Research in Chinese Universities, 2018, 34(3): 415-422. |
[10] | NIE Jing, HE Bin, CHENG Yanmei, YIN Wei, HOU Changjun, HUO Danqun, QIAN Linlin, QIN Yunan, FA Huanbao. Design of L-Cysteine Functionalized Au@SiO2@Fe3O4/Nitrogen-doped Graphene Nanocomposite and Its Application in Electrochemical Detection of Pb2+ [J]. Chemical Research in Chinese Universities, 2017, 33(6): 951-957. |
[11] | WANG Cuicui, CAI Wensheng, SHAO Xueguang. Determination of Cysteine Using Near-infrared Diffuse Reflectance Spectroscopy with Enrichment via Thiol-maleimide Click Reaction [J]. Chemical Research in Chinese Universities, 2016, 32(6): 912-916. |
[12] | CHEN Jiayi, SHU Wei, WANG Enju. A Fluorescent and Colorimetric Probe Based on Isatin-appended Rhodamine for the Detection of Hg2+ [J]. Chemical Research in Chinese Universities, 2016, 32(5): 742-745. |
[13] | CHANG Yulei, LIU Nian, LIU Huan, YANG Yanming, ZHAO Yili, LI Yapeng, YUAN Hang. Investigation on Ligand Exchange Kinetics on CdSe/ZnS Quantum Dot Surface Utilizing Pyrene as Flourescent Probe [J]. Chemical Research in Chinese Universities, 2015, 31(4): 514-518. |
[14] | SONG Yang, WANG Jin-cheng, XU Hui, DU Zhen-wu, ZHANG Gui-zhen, SELIM Hamid Abdu, LI Guang-sheng, WANG Qing, GAO Zhong-li. Fluorosis Caused Cellular Apoptosis and Oxidative Stress of Rat Kidneys [J]. Chemical Research in Chinese Universities, 2013, 29(2): 263-269. |
[15] | XU Ya-wei, JIANG Zhi-hua, MU Ying, ZHANG Lei, ZHAO Si-qi, LIU Shu-jun, WANG Cheng, ZHAO Yang, Lü Shao-wu, YAN Gang-lin, LUO Gui-min. Effects of Combinatorial Expression of selA, selB and selC Genes on the Efficiency of Selenocysteine Incorporation in Escherichia coli [J]. Chemical Research in Chinese Universities, 2013, 29(1): 87-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||