Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2): 219-226.doi: 10.1007/s40242-020-9086-5
• Reviews • Previous Articles Next Articles
YIN Jue, WANG Junke, NIU Renjie, REN Shaokang, WANG Dexu, CHAO Jie
Received:
2019-12-04
Revised:
2020-01-02
Online:
2020-04-01
Published:
2020-01-03
Contact:
CHAO Jie
E-mail:iamjchao@njupt.edu.cn
Supported by:
YIN Jue, WANG Junke, NIU Renjie, REN Shaokang, WANG Dexu, CHAO Jie. DNA Nanotechnology-based Biocomputing[J]. Chemical Research in Chinese Universities, 2020, 36(2): 219-226.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Reif J. H., Science, 2002, 296(5567), 478 |
[2] | Feynman R. P., J. Microelectromech. Syst., 1992, 1(1), 60 |
[3] | Scerri E. R., Interface Focus, 2012, 2(1), 20 |
[4] | Benenson Y., Gil B., Ben-Dor U., Adar R., ShapiroE., Nature, 2004, 429(6990), 423 |
[5] | Seelig G., Soloveichik D., Zhang D. Y., Winfree E., Science, 2006, 314(5805), 1585 |
[6] | Douglas S. M., Bachelet I., Church G. M., Science, 2012, 335(6070), 831 |
[7] | Srinivas N., Ouldridge T. E., Sulc P., Schaeffer J. M., Yurke B., Louis A. A., Doye J. P. K., Winfree E., Nucleic Acids Res., 2013, 41(22), 10641 |
[8] | Vedral V., Plenio M. B., Progress in Quantum Electronics, 1998, 22(1), 1 |
[9] | Gao F., Niu H., Zhao H., Bioimaging, 1997, 5(2), 51 |
[10] | Liu Q. H., Wang L. M., Frutos A. G., Condon A. E., Corn R. M., Smith L. M., Nature, 2000, 403(6766), 175 |
[11] | Braich R. S., Chelyapov N., Johnson C., Rothemund P. W. K., Adleman L., Science, 2002, 296(5567), 499 |
[12] | He Y., Ye T., Su M., Zhang C., Ribbe A. E., Jiang W., Mao C. D., Nature, 2008, 452(7184), 198 |
[13] | Seeman N. C., J. Theor. Biol., 1982, 99(2), 237 |
[14] | Fu T. J., Seeman N. C., Biochemistry, 1993, 32(13), 3211 |
[15] | Winfree E., Liu F. R., Wenzler L. A., Seeman N. C., Nature, 1998, 394(6693), 539 |
[16] | Yan H., Zhang X. P., Shen Z. Y., Seeman N. C., Nature, 2002, 415(6867), 62 |
[17] | Kuzuya A., Wang R. S., Sha R. J., Seeman N. C., Nano Lett., 2007, 7(6), 1757 |
[18] | Wang Y. L., Mueller J. E., Kemper B., Seeman N. C., Biochemistry, 1991, 30(23), 5667 |
[19] | Ma R. I., Kallenbach N. R., Sheardy R. D., Petrillo M. L., Seeman N. C., Nucleic Acids Res., 1986, 14(24), 9745 |
[20] | LaBean T. H., Yan H., Kopatsch J., Liu F., Winfree E., Reif J. H., Seeman N. C., J. Am. Chem. Soc., 2000, 122(9), 1848 |
[21] | Shen Z. Y., Yan H., Wang T., Seeman N. C., J. Am. Chem. Soc., 2004, 126(6), 1666 |
[22] | Mao C. D., Sun W. Q., Seeman N. C., J. Am. Chem. Soc., 1999, 121(23), 5437 |
[23] | Ding B. Q., Sha R. J., Seeman N. C., J. Am. Chem. Soc., 2004, 126(33), 10230 |
[24] | Mao C. D, Sun W. Q., Seeman N. C., J. Am. Chem. Soc., 1999, 121(23), 5437 |
[25] | Liu D., Wang M. S., Deng Z. X., Walulu R., Mao C. D., J. Am. Chem. Soc., 2004, 126(8), 2324 |
[26] | He Y., Tian Y., Ribbe A. E., Mao C. D., J. Am. Chem. Soc., 2006, 128(50), 15978 |
[27] | Pistol C., Dwyer C., Nanotechnology, 2007, 18(12), 125305 |
[28] | Lund K., Liu Y., Yan H., Organic & Biomolecular Chemistry, 2006, 4(18), 3402 |
[29] | Park S. H., Finkelstein G., LaBean T. H., J. Am. Chem. Soc., 2008, 130(1), 40 |
[30] | Lund K., Liu Y., Lindsay S., Yan H., J. Am. Chem. Soc., 2005, 127(50), 17606 |
[31] | Park S. H., Pistol C., Ahn S. J., Reif J. H., Lebeck A. R., Dwyer C., LaBean T. H., Angew. Chem. Int. Ed., 2006, 45(5), 735 |
[32] | Mathieu F., Liao S. P., Kopatscht J., Wang T., Mao C. D., Seeman N. C., Nano Lett., 2005, 5(4), 661 |
[33] | Park S. H., Barish R., Li H. Y., Reif J. H., Finkelstein G., Yan H., LaBean T. H., Nano Lett., 2005, 5(4), 693 |
[34] | Ke Y. G., Liu Y., Zhang J. P., Yan H., J. Am. Chem. Soc., 2006, 128(13), 4414 |
[35] | Zhang C., Su M., He Y., Zhao X., Fang P. A., Ribbe A. E., Jiang W., Mao C. D., P. Natl. Acad. Sci. USA, 2008, 105(31), 10665 |
[36] | Zhang C., Ko S. H., Su M., Leng Y. J., Ribbe A. E., Jiang W., Mao C. D., J. Am. Chem. Soc., 2009, 131(4), 1413 |
[37] | Ke Y. G., Ong L. L., Shih W. M., Yin P., Science, 2012, 338(6111), 1177 |
[38] | Yin P., Hariadi R. F., Sahu S., Choi H. M. T., Park S. H., LaBean T. H., Reif J. H., Science, 2008, 321(5890), 824 |
[39] | Wei B., Dai M. J., Yin P., Nature, 2012, 485(7400), 623 |
[40] | Rothemund P. W. K., Nature, 2006, 440(7082), 297 |
[41] | Andersen E. S., Dong M. D., Nielsen M. M., Jahn. K., Lind-Thomsen A., Mamdouh W., Gothelf K. V., Besenbacher F., Kjems J., ACS Nano, 2008, 2(6), 1213 |
[42] | Qian L. L., Wang Y., Zhang Z., Zhao J., Pan D., Zhang Y., Liu Q., Fan C. H., Hu J., He L., Chin. Sci. Bull., 2006, 51(24), 2973 |
[43] | Veneziano R., Ratanalert S., Zhang K. M., Zhang F., Yan H., Chiu W., Bathe M., Science, 2016, 352(6293), 4388 |
[44] | Han D. R., Pal S., Yang Y., Jiang S. X., Nangreave J., Liu Y., Yan H., Science, 2013, 339(6126), 1412 |
[45] | Han D. R., Pal S., Liu Y., Yan H., Nat. Nanotechnol., 2010, 5(10), 712 |
[46] | Ke Y. G., Sharma J., Liu M. H., Jahn K., Liu Y., Yan H., Nano Lett., 2009, 9(6), 2445 |
[47] | Dietz H., Douglas S. M., Shih W. M., Science, 2009, 325(5941), 725 |
[48] | Han D. R., Pal S., Nangreave J., Deng Z. T., Liu Y., Yan H., Science, 2011, 332(6027), 342 |
[49] | Gerling T., Wagenbauer K. F., Neuner A. M., Dietz H., Science, 2015, 347(6229), 1446 |
[50] | Modi S., Swetha M. G., Goswami D., Gupta G. D., Mayor S., Krishnan Y., Nat. Nanotechnol., 2009, 4(5), 325 |
[51] | Saha S., Prakash V., Halder S., Chakraborty K., Krishnan Y., Nat. Nanotechnol., 2015, 10(7), 645 |
[52] | Liu D. S., Balasubramanian S., Angew. Chem. Int. Ed., 2003, 42(46), 5734 |
[53] | Li S. P., Jiang Q., Liu S. L., Zhang Y. L., Tian Y. H., Song C., Wang J., Zou Y. G., Anderson G. J., Han J. Y., Chang Y., Liu Y., Zhang C., Chen L., Zhou G. B., Nie G. J., Yan H., Ding B. Q., Zhao Y. L., Nat. Biotechnol., 2018, 36(3), 258 |
[54] | Joshua D. B., Klavins E., Nano Lett., 2007, 7(9), 2574 |
[55] | Yin P., Yan H., Daniell X. G., Turberfield A. J., Reif J. H., Angew. Chem. Int. Ed., 2004, 43(37), 4906 |
[56] | Liu M. H., Fu J. L., Hejesen C., Yang Y. H., Woodbury N. W., Gothelf K., Liu Y., Yan H., Nat. Commun., 2013, 4, 2127 |
[57] | Turek V. A., Chikkaraddy R., Cormier S., Stockham B., Ding T., Keyser U. F., Baumberg J. J., Adv. Funct. Mater., 2018, 28(25), 1706410 |
[58] | Kopperger E., List J., Madhira S., Rothfischer F., Lamb D. C., Simmel F. C., Science, 2018, 359, 296 |
[59] | Kuzyk A., Yang Y. Y., Duan X. Y., Stoll S., Govorov A. O., Sugiyama H., Endo M., Liu N., Nat. Commun., 2016, 7, 10591 |
[60] | Hernandez A. S., Misiunas K., Thacker V. V., Hemmig E. A., Keyser U. F., Nano Lett., 2014, 14(3), 1270 |
[61] | Kang H. Z., Liu H. P., Phillips J. A., Cao Z. H., Kim Y. M., Chen Y., Yang Z. Y., Li J. W., Tan W. H., Nano Lett., 2009, 9(7), 2690 |
[62] | Liu H. J., Xu Y., Li F. Y., Yang Y., Wang W. X., Song Y. L., Liu D. S., Angew. Chem. Int. Ed., 2007, 46(14), 2515 |
[63] | Mao C. D., Sun W. Q., Shen Z. Y., Seeman N. C., Nature, 1999, 397(6715), 144 |
[64] | Kay E. R., Leigh D. A., Zerbetto F., Angew. Chem. Int. Ed., 2007, 46(1/2), 72 |
[65] | Bath J., Turberfield A. J., Nat. Nanotechnol., 2007, 2(5), 275 |
[66] | Yurke B., Turberfield A. J., Mills A. P., Simmel F. C., Neumann J. L., Nature, 2000, 406(6796), 605 |
[67] | Simmel F. C., Yurke B., Appl. Phys. Lett., 2002, 80(5), 883 |
[68] | Tian Y., Mao C. D., J. Am. Chem. Soc., 2004, 126(37), 11410 |
[69] | Engelen W., Meijer L. H., Somers B., de Greef T. F., Merkx M., Nat. Commun., 2017, 8, 14473 |
[70] | Shin J. S., Pierce N. A., J. Am. Chem. Soc., 2004, 126(35), 10834 |
[71] | Gu H. Z., Chao J., Xiao S. J., Seeman N. C., Nature, 2010, 465(7295), 202 |
[72] | Kosuri P., Altheimer B. D., Dai M., Yin P., Zhuang X., Nature, 2019, 572(7767), 136 |
[73] | Zhang C., Ma L. N., Dong Y. F., Yang J., Xu J., Chin. Sci. Bull., 2013, 58(1), 32 |
[74] | Li W., Yang Y., Yan H., Liu Y., Nano Lett., 2013, 13(6), 2980 |
[75] | Zadegan R. M., Jepsen M. D. E., Hildebrandt L. L., Birkedal V., Kjems J., Small, 2015, 11(15), 1811 |
[76] | Yang J., Wu R. F., Li Y. F., Wang Z. Y., Pan L. Q., Zhang Q., Lu Z. H., Zhang C., Nucleic Acids Res., 2018, 46(16), 8532 |
[77] | Chen J., Pan J., Chen S., Chemical Science, 2018, 9(2), 300 |
[78] | McCulloch W. S., Pitts W. H., Bull. Math. Biol., 1943, 52(1/2), 99 |
[79] | Qian L. L., Winfree E., Science, 2011, 332(6034), 1196 |
[80] | Qian L. L., Winfree E., Bruck J., Nature, 2011, 475(7356), 368 |
[81] | Cherry K. M., Qian L. L., Nature, 2018, 559(7714), 370 |
[82] | Elbaz J., Lioubashevski O., Wang F., Remacle F., Levine R. D., Willner I., Nat. Nanotechnol., 2010, 5(6), 417 |
[83] | Song T. Q., Garg S., Mokhtar R., Bui H., Reif J., ACS Synthetic Biology, 2016, 5(8), 898 |
[84] | Song T. Q., Eshra A., Shah S., Bui H., Fu D., Yang M., Mokhtar R., Reif J., Nat. Nanotechnol., 2019, 14(11),1075 |
[85] | Liu H. J., Wang J. B., Song S. P., Fan C. H., Gothelf K. V., Nat. Commun., 2015, 6, 10089 |
[86] | Winfree E., J. Biomol. Struct. Dyn., 2000, 17(Suppl. 1), 263 |
[87] | Mao C. D., LaBean T. H., Reif J. H., Seeman N. C., Nature, 2000, 407(6807), 493 |
[88] | Yan H., LaBean T. H., Feng L. P., Reif J. H., P. Natl. Acad. Sci. USA, 2003, 100(14), 8103 |
[89] | Rothemund P. W. K., Papadakis N., Winfree E., PLoS Biol., 2004, 2(12), 2041 |
[90] | Winfree E., Bekbolatov R., DNA Computing, Madison, 2004, 126 |
[91] | Fujibayashi K, Murata S., DNA Computing, Milan, 2005, 113 |
[92] | Tikhomirov G., Petersen P., Qian L. L., Nature, 2017, 552(7683), 67 |
[93] | Brun Y., Theoretical Computer Science, 2007, 378(1), 17 |
[94] | Tikhomirov G., Petersen P., Qian L. L., Nat. Nanotechnol., 2017, 12(3), 251 |
[95] | Woods D., Doty D., Myhrvold C., Hui J., Zhou F., Yin P., Winfree E., Nature, 2019, 567(7748), 366 |
[96] | Liu Q. H., Frutos A. G., Thiel A. J., Corn R. M., Smith L. M., J. Comput. Biol., 1998, 5(2), 269 |
[97] | Boemo M. A., Lucas A. E., Turberfield A. J., Cardelli L., ACS Synthetic Biology, 2016, 5(8), 878 |
[98] | Chatterjee G., Dalchau N., Muscat R. A., Phillips A., Seelig G., Nat. Nanotechnol., 2017, 12(9), 920 |
[99] | Cha T. G., Pan J., Chen H. R., Salgado J., Li X., Mao C. D., Choi J. H., Nat. Nanotechnol., 2014, 9(1), 39 |
[100] | Wickham S. F. J., Bath J., Katsuda Y., Endo M., Hidaka K., Sugiyama H., Turberfield A. J., Nat. Nanotechnol., 2012, 7(3), 169 |
[101] | Douglas S. M., Bachelet I., Church G. M., Science, 2012, 335(6070), 831 |
[102] | Thubagere A. J., Li W., Johnson R. F., Chen Z., Doroudi S., Lee Y. L., Izatt G., Wittman S., Srinivas N., Woods D., Winfree E., Qian L. L., Science, 2017, 357(6356), 6558 |
[103] | Chao J., Wang J. B., Wang F., Ouyang X. Y., Kopperger E., Liu H. J., Li Q., Shi J. Y., Wang L. H., Hu J., Wang L. H., Huang W., Simmel F. C., Fan C. H., Nature Mater., 2019, 18(3), 273 |
[1] | LIU Zhenyu, DONG Jinyi, PAN Jiahao, ZHOU Chao, FAN Chunhai, WANG Qiangbin. Catalytic DNA Origami-based Chiral Plasmonic Biosensor [J]. Chemical Research in Chinese Universities, 2021, 37(4): 914-918. |
[2] | CAO Mengyao, SUN Yueyang, XIAO Mingshu, LI Li, LIU Xiaohui, JIN Hong, PEI Hao. Multivalent Aptamer-modified DNA Origami as Drug Delivery System for Targeted Cancer Therapy [J]. Chemical Research in Chinese Universities, 2020, 36(2): 254-260. |
[3] | LI Xue, YANG Donglei, SHEN Luyao, XU Fan, WANG Pengfei. Programmable Assembly of DNA-protein Hybrid Structures [J]. Chemical Research in Chinese Universities, 2020, 36(2): 211-218. |
[4] | WANG Congli, DI Zhenghan, FAN Zetan, LI Lele. Self-assembly of DNA Nanostructures via Bioinspired Metal Ion Coordination [J]. Chemical Research in Chinese Universities, 2020, 36(2): 268-273. |
[5] | LONG Qipeng, YU Hanyang, LI Zhe. Reconfigurable Plasmonic Nanostructures Controlled by DNA Origami [J]. Chemical Research in Chinese Universities, 2020, 36(2): 296-300. |
[6] | ZHU Jinjin, SHANG Yingxu, YU Haiyin, LI Na, DING Baoquan. Shape-controllable Synthesis of Functional Nanomaterials on DNA Templates [J]. Chemical Research in Chinese Universities, 2020, 36(2): 171-176. |
[7] | LI Tao, DUAN Ruilin, DUAN Zhijuan, HUANG Fujian, XIA Fan. Fluorescence Signal Amplification Strategies Based on DNA Nanotechnology for miRNA Detection [J]. Chemical Research in Chinese Universities, 2020, 36(2): 194-202. |
[8] | YANG Linlin, MIAO Yanyan, HAN Da. DNA Nanotechnology on Live Cell Membranes [J]. Chemical Research in Chinese Universities, 2020, 36(2): 203-210. |
[9] | WANG Mingyang, DUAN Jialin, DAI Lizhi, XIN Xiaodong, WANG Fangfang, LI Zheng, TIAN Ye. Characterization of 3D DNA Assemblies Using Cryogenic Electron Microscopy [J]. Chemical Research in Chinese Universities, 2020, 36(2): 227-236. |
[10] | DONG Yuhang, PAN Xiaorui, LI Feng, YANG Dayong. pH-Responsive Reversible DNA Self-assembly Mediated by Zwitterion [J]. Chemical Research in Chinese Universities, 2020, 36(2): 285-290. |
[11] | GE Zhilei, LI Qian, FAN Chunhai. Framework Nucleic Acids for Cell Imaging and Therapy [J]. Chemical Research in Chinese Universities, 2020, 36(1): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||