Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1): 1-9.doi: 10.1007/s40242-019-9249-4
• Reviews • Previous Articles Next Articles
GE Zhilei, LI Qian, FAN Chunhai
Received:
2019-09-16
Revised:
2019-09-25
Online:
2020-02-01
Published:
2020-01-20
Contact:
FAN Chunhai
E-mail:fanchunhai@sjtu.edu.cn
Supported by:
GE Zhilei, LI Qian, FAN Chunhai. Framework Nucleic Acids for Cell Imaging and Therapy[J]. Chemical Research in Chinese Universities, 2020, 36(1): 1-9.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Seeman N. C., J. Theor. Biol., 1982, 99(2), 237 |
[2] | Kallenbach N. R., Ma R. I., Seeman N. C., Nature, 1983, 305(5937), 829 |
[3] | Seeman N. C., Nature, 2003, 421(6921), 427 |
[4] | Goodman R. P., Schaap I. A. T., Tardin C. F., Erben C. M., Berry R. M., Schmidt C. F., Turberfield A. J., Science, 2005, 310(5754), 1661 |
[5] | Rothemund P. W. K., Nature, 2006, 440(7082), 297 |
[6] | Yang F., Li Q., Wang L., Zhang G. J., Fan C., ACS Sensors, 2018, 3(5), 903 |
[7] | Liu Q., Ge Z., Mao X., Zhou G., Zuo X., Shen J., Shi J., Li J., Wang L., Chen X., Fan C., Angew. Chem. Int. Ed., 2018, 57(24), 7131 |
[8] | Ge Z., Gu H., Li Q., Fan C., J. Am. Chem. Soc., 2018, 140(51), 17808 |
[9] | Lu N., Pei H., Ge Z. L., Simmons C. R., Yan H., Fan C. H., J. Am. Chem. Soc., 2012, 134(32), 13148 |
[10] | Ye D., Zuo X., Fan C., Annu. Rev. Anal. Chem., 2018, 11(1), 171 |
[11] | Yang F., Zuo X. L., Fan C. H., Zhang X. E., Natl. Sci. Rev., 2018, 5(5), 740 |
[12] | Andersen E. S., Dong M., Nielsen M. M., Jahn K., Subramani R., Mamdouh W., Golas M. M., Sander B., Stark H., Oliveira C. L. P., Pedersen J. S., Birkedal V., Besenbacher F., Gothelf K. V., Kjems J., Nature, 2009, 459(7243), 73 |
[13] | Chen J. H., Seeman N. C., Nature, 1991, 350(6319), 631 |
[14] | Douglas S. M., Dietz H., Liedl T., Hogberg B., Graf F., Shih W. M., Nature, 2009, 459(7250), 1154 |
[15] | Gu H. Z., Chao J., Xiao S. J., Seeman N. C., Nature, 2010, 465(7295), 202 |
[16] | Wei B., Dai M. J., Yin P., Nature, 2012, 485(7400), 623 |
[17] | Yan H., Park S. H., Finkelstein G., Reif J. H., LaBean T. H., Science, 2003, 301(5641), 1882 |
[18] | Yan H., Zhang X., Shen Z., Seeman N. C., Nature, 2002, 415(6867), 62 |
[19] | Pei H., Zuo X. L., Zhu D., Huang Q., Fan C. H., Acc. Chem. Res., 2014, 47(2), 550 |
[20] | Chen N., Li J., Song H. Y., Chao J., Huang Q., Fan C. H., Acc. Chem. Res., 2014, 47(6), 1720 |
[21] | Zhang F., Jiang S. X., Wu S. Y., Li Y. L., Mao C. D., Liu Y., Yan H., Nat. Nanotech., 2015, 10(9), 779 |
[22] | Han D. R., Pal S., Nangreave J., Deng Z. T., Liu Y., Yan H., Science, 2011, 332(6027), 342 |
[23] | Douglas S. M., Dietz H., Liedl T., Hogberg B., Graf F., Shih W. M., Nature, 2009, 459(7245), 414 |
[24] | Qi X. D., Zhang F., Su Z. M., Jiang S. X., Han D. R., Ding B. Q., Liu Y., Chiu W., Yin P., Yan H., Nat. Commun., 2018, 9, 4579 |
[25] | Han D. R., Qi X. D., Myhrvold C., Wang B., Dai M. J., Jiang S. X., Bates M., Liu Y., An B., Zhang F., Yan H., Yin P., Science, 2017, 358(6369), eaao2648 |
[26] | Cutler J. I., Auyeung E., Mirkin C. A., J. Am. Chem. Soc., 2012, 134(3), 1376 |
[27] | Mirkin C. A., Letsinger R. L., Mucic R. C., Storhoff J. J., Nature, 1996, 382(6592), 607 |
[28] | Alivisatos A. P., Johnsson K. P., Peng X., Wilson T. E., Loweth C. J., Bruchez M. P., Schultz P. G., Nature, 1996, 382(6592), 609 |
[29] | Macfarlane R. J., Lee B., Jones M. R., Harris N., Schatz G. C., Mirkin C. A., Science, 2011, 334(6053), 204 |
[30] | Auyeung E., Li T. I., Senesi A. J., Schmucker A. L., Pals B. C., de la Cruz M. O., Mirkin C. A., Nature, 2014, 505(7481), 73 |
[31] | Mastroianni A. J., Claridge S. A., Alivisatos A. P., J. Am. Chem. Soc., 2009, 131(24), 8455 |
[32] | Chao J., Wang J., Wang F., Ouyang X., Kopperger E., Liu H., Li Q., Shi J., Wang L., Hu J., Wang L., Huang W., Simmel F. C., Fan C., Nature Materials, 2019, 18(3), 273 |
[33] | Zhang H. L., Chao J., Pan D., Liu H. J., Qiang Y., Liu K., Cui C. J., Chen J. H., Huang Q., Hu J., Wang L. H., Huang W., Shi Y. Y., Fan C. H., Nat. Commun., 2017, 8, 14738 |
[34] | Li J., Pei H., Zhu B., Liang L., Wei M., He Y., Chen N., Li D., Huang Q., Fan C. H., ACS Nano, 2011, 5(11), 8783 |
[35] | Walsh A. S., Yin H. F., Erben C. M., Wood M. J. A., Turberfield A. J., ACS Nano, 2011, 5(7), 5427 |
[36] | He L., Lu D. Q., Liang H., Xie S. T., Zhang X. B., Liu O. L., Yuan Q., Tan W. H., J. Am. Chem. Soc., 2018, 140(1), 258 |
[37] | Liu W. Y., Halverson J., Tian Y., Tkachenko A. V., Gang O., Nat. Chem., 2016, 8(9), 867 |
[38] | Jiang D., Ge Z., Im H. J., England C. G., Ni D., Hou J., Zhang L., Kutyreff C. J., Yan Y., Liu Y., Cho S. Y., Engle J. W., Shi J., Huang P., Fan C., Yan H., Cai W., Nat. Biomed. Eng., 2018, 2(11), 865 |
[39] | Zhu G., Zheng J., Song E., Donovan M., Zhang K., Liu C., Tan W., Proc. Natl. Acad. Sci. USA, 2013, 110(20), 7998 |
[40] | Yang Y. R., Liu Y., Yan H., Bioconj. Chem., 2015, 26(8), 1381 |
[41] | Shelby M. L., Lestrange P. J., Jackson N. E., Haldrup K., Mara M. W., Stickrath A. B., Zhu D., Lemke H. T., Chollet M., Hoffman B. M., Li X., Chen L. X., J. Am. Chem. Soc., 2016, 138(28), 8752 |
[42] | Chhabra R., Sharma J., Liu Y., Yan H., Nano Lett., 2006, 6(5), 978 |
[43] | Zhang J., Liu Y., Ke Y., Yan H., Nano Lett., 2006, 6(2), 248 |
[44] | Liu X., Zhang F., Jing X., Pan M., Liu P., Li W., Zhu B., Li J., Chen H., Wang L., Lin J., Liu Y., Zhao D., Yan H., Fan C., Nature, 2018, 559(7715), 593 |
[45] | He Y., Ye T., Su M., Zhang C., Ribbe A. E., Jiang W., Mao C., Nature, 2008, 452(7184), 198 |
[46] | Pei H., Lu N., Wen Y., Song S., Liu Y., Yan H., Fan C., Adv. Mater., 2010, 22(42), 4754 |
[47] | Wang Y., Mueller J. E., Kemper B., Seeman N. C., Biochemistry, 1991, 30(23), 5667 |
[48] | Fu T. J., Seeman N. C., Biochemistry, 1993, 32(13), 3211 |
[49] | Tian C., Zhang C., Methods Mol. Biol., 2017, 1500, 11 |
[50] | Zhang C., Ko S. H., Su M., Leng Y., Ribbe A. E., Jiang W., Mao C., J. Am. Chem. Soc., 2009, 131(4), 1413 |
[51] | Zhang C., He Y., Su M., Ko S. H., Ye T., Leng Y., Sun X., Ribbe A. E., Jiangh W., Mao C., Faraday Discuss., 2009, 143, 221; discussion 265 |
[52] | Hong F., Zhang F., Liu Y., Yan H., Chem. Rev., 2017, 117(20), 12584 |
[53] | Liu L., You Y., Zhou K., Guo B., Cao Z., Zhao Y., Wu H. C., Angew. Chem. Int. Ed., 2019, 58, 14929 |
[54] | Maingi V., Burns J. R., Uusitalo J. J., Howorka S., Marrink S. J., Sansom M. S. P., Nat. Commun., 2017, 8, 14784 |
[55] | Shao Y., Jia H., Cao T., Liu D., Acc. Chem. Res., 2017, 50(4), 659 |
[56] | English M. A., Soenksen L. R., Gayet R. V., de Puig H., An-genent-Mari N. M., Mao A. S., Nguyen P. Q., Collins J. J., Science, 2019, 365(6455), 780 |
[57] | Ge Z., Lin M., Wang P., Pei H., Yan J., Shi J., Huang Q., He D., Fan C., Zuo X., Anal. Chem., 2014, 86(4), 2124 |
[58] | Ge Z., Pei H., Wang L., Song S., Fan C., Sci. Chi. Chem., 2011, 54(8), 1273 |
[59] | Lin M., Wang J., Zhou G., Wang J., Wu N., Lu J., Gao J., Chen X., Shi J., Zuo X., Fan C., Angew. Chem. Int. Ed., 2015, 54(7), 2151 |
[60] | Wen Y., Pei H., Shen Y., Xi J., Lin M., Lu N., Shen X., Li J., Fan C., Sci. Rep., 2012, 2, 867 |
[61] | Ge Z., Su Z., Simmons C. R., Li J., Jiang S., Li W., Yang Y., Liu Y., Chiu W., Fan C., Yan H., ACS Appl. Mater. Interfaces, 2019, 11(15), 13874 |
[62] | Ge Z., Fu J., Liu M., Jiang S., Andreoni A., Zuo X., Liu Y., Yan H., Fan C., ACS Appl. Mater. Interfaces, 2019, 11(15), 13881 |
[63] | Pei H., Li F., Wan Y., Wei M., Liu H., Su Y., Chen N., Huang Q., Fan C., J. Am. Chem. Soc., 2012, 134, 11876 |
[64] | Zhao Z., Liu Y., Yan H., Nano Lett., 2011, 11, 2997 |
[65] | Tian Y., Zhang Y., Wang T., Xin H. L., Li H., Gang O., Nature Materials, 2016, 15, 654 |
[66] | Langer R., Nature, 1998, 392, 5 |
[67] | Liang L., Li J., Li Q., Huang Q., Shi J. Y., Yan H., Fan C. H., Angew. Chem. Int. Ed., 2014, 53(30), 7745 |
[68] | Wiraja C., Zhu Y., Lio D. C. S., Yeo D. C., Xie M., Fang W., Li Q., Zheng M., van Steensel M., Wang L., Fan C., Xu C., Nat. Commun., 2019, 10(1), 1147 |
[69] | Ko S., Liu H., Chen Y., Mao C., Biomacromolecules, 2008, 9(11), 3039 |
[70] | Sefah K., Shangguan D., Xiong X., O'Donoghue M. B., Tan W., Nat. Protoc., 2010, 5(6), 1169 |
[71] | Varkouhi A. K., Scholte M., Storm G., Haisma H. J., J. Control Re-lease, 2011, 151(3), 220 |
[72] | Howorka S., Science, 2016, 352(6288), 890 |
[73] | Burns J. R., Seifert A., Fertig N., Howorka S., Nat. Nanotech., 2016, 11(2), 152 |
[74] | Burns J. R., Stulz E., Howorka S., Nano Lett., 2013, 13(6), 2351 |
[75] | Langecker M., Arnaut V., Martin T. G., List J., Renner S., Mayer M., Dietz H., Simmel F. C., Science, 2012, 338(6109), 932 |
[76] | Czogalla A., Kauert D. J., Franquelim H. G., Uzunova V., Zhang Y., Seidel R., Schwille P., Angew. Chem. Int. Ed. Engl., 2015, 54(22), 6501 |
[77] | Burns J. R., Göpfrich K., Wood J. W., Thacker V. V., Stulz E., Keyser U. F., Howorka S., Angew. Chem. Int. Ed. Engl., 2013, 52(46), 12069 |
[78] | Johnson-Buck A., Jiang S., Yan H., Walter N. G., ACS Nano, 2014, 8(6), 5641 |
[79] | Johnson-Buck A., Jiang S., Yan H., Walter N. G., ACS Nano, 2014, 8, 5641 |
[80] | Xie N., Liu S., Yang X., He X., Huang J., Wang K., Analyst, 2017, 142, 3322 |
[81] | Hu Q., Li H., Wang L., Gu H., Fan C., Chem. Rev., 2018, 119(10), 6459 |
[82] | Hu Q., Wang S., Wang L., Gu H., Fan C., Advanced Healthcare Materials, 2018, 20, e1701153 |
[83] | Doherty G. J., McMahon H. T., Annu. Rev. Biochem., 2009, 78, 857 |
[84] | Meng M., Gan Z. X., Zhang J., Liu K. L., Wang L. H., Li S. F., Yao Y., Zhu Y., Li J., Physica Status Solidi B:Basic Solid State Physics, 2017, 254(7), 1700011 |
[85] | Banerjee A., Berezhkovskii A., Nossal R., Phys. Biol., 2016, 13(1), 016005 |
[86] | McMahon H. T., Boucrot E., Nat. Rev. Mol. Cell Biol., 2011, 12(8), 517 |
[87] | Peters P. J., Mironov A., Peretz D., van Donselaar E., Leclerc E., Erpel S., de Armond S. J., Burton D. R., Williamson R. A., Vey M., Prusiner S. B., J. Cell Biol., 2003, 162(4), 703 |
[88] | Nabi I. R., Le P. U., J. Cell Biol., 2003, 161(4), 673 |
[89] | Schaffert D. H., Okholm A. H., Sørensen R. S., Nielsen J. S., Tørring T., Rosen C. B., Kodal A. L., Mortensen M. R., Gothelf K. V., Kjems J., Small, 2016, 12(19), 2634 |
[90] | Lee H., Lytton-Jean A. K. R., Chen Y., Love K. T., Park A. I., Kara-giannis E. D., Sehgal A., Querbes W., Zurenko C. S., Jayaraman M., Peng C. G., Charisse K., Borodovsky A., Manoharan M., Donahoe J. S., Truelove J., Nahrendorf M., Langer R., Anderson D. G., Nat. Nanotech., 2012, 7(6), 389 |
[91] | Li S. P., Jiang Q., Liu S. L., Zhang Y. L., Tian Y. H., Song C., Wang J., Zou Y. G., Anderson G. J., Han J. Y., Chang Y., Liu Y., Zhang C., Chen L., Zhou G. B., Nie G. J., Yan H., Ding B. Q., Zhao Y. L., Nat. Biotechnol., 2018, 36(3), 258 |
[92] | Schwarzenbach H., Hoon D. S., Pantel K., Nat. Rev. Cancer, 2011, 11(6), 426 |
[93] | Choi H. M. T., Chang J. Y., Trinh L. A., Padilla J. E., Fraser S. E., Pierce N. A., Nat. Biotechnol., 2010, 28(11), 1208 |
[94] | Tay C. Y., Yuan L., Leong D. T., ACS Nano, 2015, 9(5), 5609 |
[95] | Zhou W., Li D., Xiong C., Yuan R., Xiang Y., ACS Appl. Mater, Interfaces, 2016, 8(21), 13303 |
[96] | Li S., Xu L., Ma W., Wu X., Sun M., Kuang H., Wang L., Kotov N. A., Xu C., J. Am. Chem. Soc., 2016, 138(1), 306 |
[97] | Thekkan S., Jani M. S., Cui C., Dan K., Zhou G., Becker L., Krishnan Y., Nat. Chem. Biol., 2018, doi:10.1038/s41589-018-0176-3 |
[98] | Zhou G., Lin M., Song P., Chen X., Chao J., Wang L., Huang Q., Huang W., Fan C., Zuo X., Anal. Chem., 2014, 86, 7843 |
[99] | Zhou W., Liang W., Li D., Yuan R., Xiang Y., Biosens. Bioelectron., 2016, 85, 573 |
[100] | Dan K., Veetil A. T., Chakraborty K., Krishnan Y. Nat. Nanotech., 2019, 14(3), 252 |
[101] | Nagrath S., Sequist L. V., Maheswaran S., Bell D. W., Irimia D., Ulkus L., Smith M. R., Kwak E. L., Digumarthy S., Muzikansky A., Ryan P., Balis U. J., Tompkins R. G., Haber D. A., Toner M., Nature, 2007, 450(7173), 1235 |
[102] | Wen C. Y., Wu L. L., Zhang Z. L., Liu Y. L., Wei S. Z., Hu J., Tang M., Sun E. Z., Gong Y. P., Yu J., Pang D. W., ACS Nano, 2014, 8(1), 941 |
[103] | Zhao W., Cui C. H., Bose S., Guo D., Shen C., Wong W. P., Hal-vorsen K., Farokhzad O. C., Teo G. S., Phillips J. A., Dorfman D. M., Karnik R., Karp J. M., Proc. Natl. Acad. Sci., USA, 2012, 109(48), 19626 |
[104] | Sheng W., Chen T., Tan W., Fan Z. H., ACS Nano, 2013, 7(8), 7067 |
[105] | Qu X., Wang S., Ge Z., Wang J., Yao G., Li J., Zuo X., Shi J., Song S., Wang L., Li L., Pei H., Fan C., J. Am. Chem. Soc., 2017, 139(30), 10176 |
[106] | Li S., Chen N., Zhang Z., Wang Y., Biomaterials, 2013, 34(2), 460 |
[107] | Seferos D. S., Giljohann D. A., Hill H. D., Prigodich A. E., Mirkin C. A., J. Am. Chem. Soc., 2007, 129, 15477 |
[108] | Halo T. L., McMahon K. M., Angeloni N. L., Xu Y., Wang W., Chinen A. B., Malin D., Strekalova E., Cryns V. L., Cheng C., Mirkin C. A., Thaxton C. S., Proc. Natl. Acad. Sci. USA, 2014, 111(48), 17104 |
[109] | Briley W. E., Bondy M. H., Randeria P. S., Dupper T. J., Mirkin C. A., Proc. Natl. Acad. Sci. USA, 2015, 112(31), 9591 |
[110] | Song S., Liang Z., Zhang J., Wang L., Li G., Fan C., Angew. Chem. Int. Ed., 2009, 48(46), 8670 |
[111] | Pei H., Liang L., Yao G., Li J., Huang Q., Fan C., Angew. Chem. Int. Ed., 2012, 51(36), 9020 |
[112] | Peng P., Du Y., Zheng J., Wang H., Li T., Angew. Chem. Int. Ed., 2019, 58, 1648 |
[113] | Bhatia D., Arumugam S., Nasilowski M., Joshi H., Wunder C., Chambon V., Prakash V., Grazon C., Nadal B., Maiti P. K., Johannes L., Dubertret B., Krishnan Y., Nat. Nanotechnol., 2016, 11(12), 1112 |
[114] | Wu C., Chen T., Han D., You M., Peng L., Cansiz S., Zhu G., Li C., Xiong X., Jimenez E., Yang C. J., Tan W., ACS Nano, 2013, 7(7), 5724 |
[115] | Saha S., Prakash V., Halder S., Chakraborty K., Krishnan Y., Nat. Nanotech., 2015, 10(7), 645 |
[116] | Modi S., Nizak C., Surana S., Halder S., Krishnan Y., Nat. Nano-technol., 2013, 8(6), 459 |
[117] | Surana S., Bhat J. M., Koushika S. P., Krishnan Y., Nat. Commun., 2011, 2, 340 |
[118] | Jiang Q., Song C., Nangreave J., Liu X., Lin L., Qiu D., Wang Z. G., Zou G., Liang X., Yan H., Ding B., J. Am. Chem. Soc., 2012, 134, 13396 |
[119] | Liu X., Xu Y., Yu T., Clifford C., Liu Y., Yan H., Chang Y., Nano Lett., 2012, 12, 4254 |
[120] | Sun W., Ji W., Hall J. M., Hu Q., Wang C., Beisel C. L., Gu Z., Angew. Chem. Int. Ed., 2015, 54, 12029 |
[121] | Tian J., Ding L., Ju H., Yang Y., Li X., Shen Z., Zhu Z., Yu J. S., Yang C. J., Angew. Chem. Int. Ed., 2014, 53, 9544 |
[122] | Bagalkot V., Farokhzad O. C., Langer R., Jon S., Angew. Chem. Int. Ed. Engl., 2006, 45(48), 8149 |
[123] | Yuan Q., Zhang Y., Chen T., Lu D., Zhao Z., Zhang X., Li Z., Yan C. H., Tan W., ACS Nano, 2012, 6(7), 6337 |
[124] | Zhang P., He Z., Wang C., Chen J., Zhao J., Zhu X., Li C. Z., Min Q., Zhu J. J., ACS Nano, 2015, 9(1), 789 |
[125] | Huang F., Liao W. C., Sohn Y. S., Nechushtai R., Lu C. H., Willner I., J. Am. Chem. Soc., 2016, 138(28), 8936 |
[126] | Sun W., Jiang T., Lu Y., Reiff M., Mo R., Gu Z., J. Am. Chem. Soc., 2014, 136(42), 14722 |
[127] | Chen W. H., Liao W. C., Sohn Y. S., Fadeev M., Cecconello A., Nechushtai R., Willner I., Adv. Funct. Mater., 2018, 28(8), 1705137 |
[128] | Chen W. H., Yu X., Liao W. C., Sohn Y. S., Cecconello A., Kozell A., Nechushtai R., Willner I., Adv. Funct. Mater., 2017, 27(37), 1702102 |
[129] | Liu H., Kwong B., Irvine D. J., Angew. Chem. Int. Ed. Engl., 2011, 50(31), 7052 |
[130] | Mohri K., Nishikawa M., Takahashi N., Shiomi T., Matsuoka N., Ogawa K., Endo M., Hidaka K., Sugiyama H., Takahashi Y., Takakura Y., ACS Nano, 2012, 6(7), 5931 |
[131] | Liu X. W., Xu Y., Yu T., Clifford C., Liu Y., Yan H., Chang Y., Nano Lett., 2012, 12(8), 4254 |
[132] | Xiong X., Liu H., Zhao Z., Altman M. B., Lopez-Colon D., Yang C. J., Chang L. J., Liu C., Tan W., Angew. Chem. Int. Ed., 2013, 52(5), 1472 |
[133] | Celli J. P., Spring B. Q., Rizvi I., Evans C. L., Samkoe K. S., Verma S., Pogue B. W., Hasan T., Chem. Rev., 2010, 110(5), 2795 |
[134] | Wang K., You M., Chen Y., Han D., Zhu Z., Huang J., Williams K., Yang C. J., Tan W., Angew. Chem. Int. Ed., 2011, 50(27), 6098 |
[135] | You M., Peng L., Shao N., Zhang L., Qiu L., Cui C., Tan W., J. Am. Chem. Soc., 2014, 136(4), 1256 |
[136] | You M., Zhu G., Chen T., Donovan M. J., Tan W., J. Am. Chem. Soc., 2015, 137(2), 667 |
[137] | Naldini L., Nature, 2015, 526(7573), 351 |
[138] | Kotterman M. A., Schaffer D. V., Nat. Rev. Genet., 2014, 15(7), 445 |
[139] | Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C., Nature, 1998, 391(6669), 806 |
[140] | Zamore P. D., Tuschl T., Sharp P. A., Bartel D. P., Cell, 2000, 101(1), 25 |
[141] | Elbashir S. M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T., Nature, 2001, 411(6836), 494 |
[142] | Brummelkamp T. R., Bernards R., Agami R., Science, 2002, 296(5567), 550 |
[143] | Hong C. A., Eltoukhy A. A., Lee H., Langer R., Anderson D. G., Nam Y. S., Angew. Chem. Int. Ed., 2015, 54(23), 6740 |
[144] | Li J., Zheng C., Cansiz S., Wu C., Xu J., Cui C., Liu Y., Hou W., Wang Y., Zhang L., Teng I. T., Yang H. H., Tan W., J. Am. Chem. Soc., 2015, 137(4), 1412 |
[145] | Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Char-pentier E., Science, 2012, 337(6096), 816 |
[146] | Cong L., Ran F. A., Cox D., Lin S., Barretto R., Habib N., Hsu P. D., Wu X., Jiang W., Marraffini L. A., Zhang F., Science, 2013, 339(6121), 819 |
[147] | Mali P., Yang L., Esvelt K. M., Aach J., Guell M., DiCarlo J. E., Norville J. E., Church G. M., Science, 2013, 339(6121), 823 |
[148] | Huang J., Li J., Lyu Y., Miao Q., Pu K., Nat Mater., 2019, doi:10.1038/s41563-019-0378-4 |
[149] | Granger D. N., Kvietys P. R., Redox. Biol., 2015, 6, 524 |
[150] | Boor P., Ostendorf T., Floege J., Nat. Rev. Nephrol., 2010, 6(11), 643 |
[151] | Praetorius F., Kick B., Behler K. L., Honemann M. N., Weuster-Botz D., Dietz H., Nature, 2017, 552(7683), 84 |
[152] | Agarwal N. P., Matthies M., Gür F. N., Osada K., Schmidt T. L., Angew. Chem. Int. Ed., 2017, 56(20), 5460 |
[153] | Ponnuswamy N., Bastings M. M. C., Nathwani B., Ryu J. H., Chou L. Y. T., Vinther M., Li W. A., Anastassacos F. M., Mooney D. J., Shih W. M., Nat. Commun., 2017, 8, 15654 |
[1] | HUANG Qin, LIU Xin, ZHANG Pengge, WU Zhan, ZHAO Zilong. A DNA Nano-train Carrying a Predefined Drug Combination for Cancer Therapy [J]. Chemical Research in Chinese Universities, 2022, 38(4): 928-934. |
[2] | WU Liting, XIN Yujia, GUO Zhaoyang, GAO Wei, ZHU Yanpeng, br, WANG Yinsong, RAN Ruixue, YANG Xiaoying. Cell Membrane-camouflaged Multi-functional Dendritic Large Pore Mesoporous Silica Nanoparticles for Combined Photothermal Therapy and Radiotherapy of Cancer [J]. Chemical Research in Chinese Universities, 2022, 38(2): 562-571. |
[3] | WANG Youjuan, YE Zhifei, SONG Guosheng, LIU Zhuang. Magnetic-Optical Imaging for Monitoring Chemodynamic Therapy [J]. Chemical Research in Chinese Universities, 2022, 38(2): 481-492. |
[4] | TANG Lin, ZENG Xiaodong, ZHOU Hui, GUI Conghao, LUO Qiulin, ZHOU Wenyi, WU Jing, LI Qianqian, LI Yang, XIAO Yuling. Theranostic Gold Nanoclusters for NIR-II Imaging and Photodynamic Therapy [J]. Chemical Research in Chinese Universities, 2021, 37(4): 934-942. |
[5] | LIU Zhenyu, DONG Jinyi, PAN Jiahao, ZHOU Chao, FAN Chunhai, WANG Qiangbin. Catalytic DNA Origami-based Chiral Plasmonic Biosensor [J]. Chemical Research in Chinese Universities, 2021, 37(4): 914-918. |
[6] | YU Qing, HUANG Xuan, ZHANG Tian, WANG Weili, YANG Dongliang, SHAO Jinjun, DONG Xiaochen. Near-infrared Aza-BODIPY Dyes Through Molecular Surgery for Enhanced Photothermal and Photodynamic Antibacterial Therapy [J]. Chemical Research in Chinese Universities, 2021, 37(4): 951-959. |
[7] | LI Mengqi, MA He, SHI Chao, ZHANG Han, LONG Saran, SUN Wen, DU Jianjun, FAN Jiangli, PENG Xiaojun. A Cyanine-based Liposomal Nanophotosensitizer for Enhanced Cancer Chemo-Photodynamic Therapy [J]. Chemical Research in Chinese Universities, 2021, 37(4): 925-933. |
[8] | ZHANG Xindan, GONG Bowen, ZHAI Jiliang, ZHAO Yu, LU Yonglai, ZHANG Liqun, XUE Jiajia. A Perspective: Electrospun Fibers for Repairing Spinal Cord Injury [J]. Chemical Research in Chinese Universities, 2021, 37(3): 404-410. |
[9] | LI Jun, OU Hanlin, DING Dan. Recent Progress in Boosted PDT Induced Immunogenic Cell Death for Tumor Immunotherapy [J]. Chemical Research in Chinese Universities, 2021, 37(1): 83-89. |
[10] | FANG Fang, GAO Yuting, LUO Liang. Mitochondrion-anchoring AIEgen with Large Stokes Shift for Imaging-guided Photodynamic Therapy [J]. Chemical Research in Chinese Universities, 2021, 37(1): 137-142. |
[11] | HAO Yuxuan, XU Shengpeng, CHEN Ming, QIAN Jun, TANG Ben Zhong. Bioapplications Manipulated by AIEgens with Nonlinear Optical Effect [J]. Chemical Research in Chinese Universities, 2021, 37(1): 25-37. |
[12] | LIU Jie, CHEN Bo, ZHANG Jianjun. Preparation of pH-Responsive Doxorubicin Nanocapsules by Combining High-gravity Antisolvent Precipitation with In-situ Polymerization for Intracellular Anticancer Drug Delivery [J]. Chemical Research in Chinese Universities, 2020, 36(5): 927-933. |
[13] | CAO Mengyao, SUN Yueyang, XIAO Mingshu, LI Li, LIU Xiaohui, JIN Hong, PEI Hao. Multivalent Aptamer-modified DNA Origami as Drug Delivery System for Targeted Cancer Therapy [J]. Chemical Research in Chinese Universities, 2020, 36(2): 254-260. |
[14] | LI Xue, YANG Donglei, SHEN Luyao, XU Fan, WANG Pengfei. Programmable Assembly of DNA-protein Hybrid Structures [J]. Chemical Research in Chinese Universities, 2020, 36(2): 211-218. |
[15] | WANG Congli, DI Zhenghan, FAN Zetan, LI Lele. Self-assembly of DNA Nanostructures via Bioinspired Metal Ion Coordination [J]. Chemical Research in Chinese Universities, 2020, 36(2): 268-273. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||