Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2): 171-176.doi: 10.1007/s40242-020-9035-3
• Reviews • Previous Articles Next Articles
ZHU Jinjin1,2, SHANG Yingxu2, YU Haiyin1, LI Na2, DING Baoquan2
Received:
2019-10-31
Revised:
2019-12-18
Online:
2020-04-01
Published:
2020-03-18
Contact:
YU Haiyin, LI Na, DING Baoquan
E-mail:yhy456@ahnu.edu.cn;lin@nanoctr.cn;dingbq@nanoctr.cn
Supported by:
ZHU Jinjin, SHANG Yingxu, YU Haiyin, LI Na, DING Baoquan. Shape-controllable Synthesis of Functional Nanomaterials on DNA Templates[J]. Chemical Research in Chinese Universities, 2020, 36(2): 171-176.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Liu J. F., Geng Y. L., Elisabeth P., Shailendra G., Ashton J. R., John N. Harb., Adam T. W., ACS Nano, 2011, 5(3), 2240 |
[2] | Cui Y., Lauhon L. J., Gudiksen M. S., Wang J., Lieber C. M., Appl. Phys. Lett., 2001, 78(15), 2214 |
[3] | Park W. I., Zheng G., Jiang X., Tian B., Lieber C. M., Nano lett., 2008, 8(9), 3004 |
[4] | Cui Q. H., Zhao Y. S., Yao J., Adv. Mater, 2014, 26(40), 6852 |
[5] | Zhao Y. S., Wu J., Huang J., J. Am. Chem. Soc., 2009, 131(9), 3158 |
[6] | Liu N., Liedl T., Chem. Rev., 2018, 118(6), 3032 |
[7] | Liu J., Bu W., Zhang S., Chen F., Xing H., Pan L., Zhou L., Peng W., Shi J., Chem.: Eur. J., 2012, 18(8), 2335 |
[8] | Zhou C., Xin L., Duan X. Y., Urban M., Liu N., Nano Lett., 2018, 18(11), 7395 |
[9] | Palmer R. E., Pratontep S., Boyen H. G., Nat. Mater., 2003, 2(7), 443 |
[10] | Pompa P. P., Martiradonna L., Torre A. D., Sala F. D., Manna L., Vittorio M. D., Calabi F., Cingolani R., Rinaldi R., Nat. Nanotech., 2006, 1(2), 126 |
[11] | Koh A. L., Fernández-Domínguez A. I., McComb D. W., Maier S. A., Yang J. K., Microsc. Microana., 2011, 17(S2), 764 |
[12] | Zanchet D., Micheel C. M., Parak W. J., Gerion D., Alivisatos A. P, Nano Lett., 2001, 1(1), 32 |
[13] | Dittmer W. U., Simmel F. C., Appl. Phys. Lett., 2004, 85(4), 633 |
[14] | Chen Y. J., Benjamin G., Muscat R. A., Georg S., Nat. Nanotech., 2015, 10(9), 748 |
[15] | Kallenbach N. R., Ma R. I., Seeman N. C., Nature, 1983, 305(5937), 829 |
[16] | Seeman N. C., J. Theor. Bio., 1982, 99(2), 237 |
[17] | Winfree E., Liu F., Wenzler L. A., Seeman N. C., Nature, 1998, 394(6693), 539 |
[18] | Rothemund P. W., Nature, 2006, 440(7082), 297 |
[19] | Liu W., Zhong H., Wang R., Seeman N. C., Angew. Chem. Int. Ed., 2011, 50(1), 264 |
[20] | Douglas S. M., Marblestone A. H., Teerapittayanon S., Vazquez A., Church G. M., Shih W. M., Nucleic. Acids. Res., 2009, 37(15), 5001 |
[21] | Kuzuya A., Komiyama M., Chem. Commun., 2009, (28), 4182 |
[22] | Zhao Z., Yan H., Liu Y., Angew. Chem. Int. Edit., 2010, 49(8), 1414 |
[23] | Pei H., Zuo X., Zhu D., Huang Q., Fan C. H., Accounts Chem. Res., 2013, 47(2), 550 |
[24] | Schnitzler T., Herrmann A., Accounts Chem. Res., 2012, 45(9), 1419 |
[25] | Liang H., Zhang X. B., Lv Y. H., Gong L., Wang R. W., Zhu X. Y., Yang R. H., Tan W. H., Accounts Chem. Res., 2014, 47(6), 1891 |
[26] | Mao X., Chen G., Wang Z., Zhang Y., Zhu X., Li G., Chem. Sci., 2018, 9(4), 811 |
[27] | Lu Y., Liu J., Curr. Opin. Biotech., 2006, 17(6), 580 |
[28] | Kim B. S., Lee S. W., Yoon H., Strano M. S., Yang S. H., Hammond P. T., Chem. Mater., 2010, 22(16), 4791 |
[29] | Li D., Huang J. X., Kaner R. B., Acc. Chem. Res., 2009, 42(1), 135 |
[30] | Kane-Maguire L. A. P., Wallace G. G., Chem. Soc. Rev., 2010, 39(7), 2545 |
[31] | Wei Z., Faul C. F. J., Macromol. Rapid. Comm., 2010, 29(4), 280 |
[32] | Ma Y. F., Zhang J., Zhang G., He H., J. Am. Chem. Soc., 2004, 126(22), 7097 |
[33] | Xu P., Singh A., Kaplan D. L., Adv. Polym. Sci., 2005, 194(1), 69 |
[34] | Lin H. K., Chen S. A., Macromolecules, 2000, 33(22), 8117 |
[35] | Bae W. J., Kim K. H., Park Y. H., Jo W. H., Chem. Commun., 2003, 22(22), 2768 |
[36] | Li W. G., McCarthy P. A., Liu D. G., Huang J. Y., Wang H. L., Macromolecules, 2002, 35(27), 9975 |
[37] | Wang W., Lu X., Li Z., Lei J., Wang C., Adv. Mater., 2011, 23(43), 5109 |
[38] | Wang Z. G., Zhan P. F., Ding B. Q., ACS Nano, 2013, 7(2), 1591 |
[39] | Wang Z. G., Liu Q., Ding B. Q., Chem. Mater., 2014, 26(11), 3364 |
[40] | Lee H., Dellatore S. M., Miller W. M., Messersmith P. B., Science, 2007, 318(5849), 426 |
[41] | Tokura Y., Harvey S., Chen C., Wu Y., Ng D. Y. W., Weil T., Angew. Chem. Int. Ed., 2018, 57, 1587 |
[42] | Tokura Y., Harvey S., Xu X., Chen C., Morsbach S., Wunderlich K., Fytas G., Wu Y., Ng. D. Y. W., Weil, T., Chem. Commun., 2018, 54, 2808 |
[43] | Zhou C., Yang Y. R., Dong Y. C., Wu F., Wang D. M., Xin L., Liu D. S., Adv. Mater., 2016, 28, 9819 |
[44] | Dong Y. C., Yang Y. R., Zhang Y. Y., Wang D. M., Wei X. X., Banerjee S., Liu Y., Yang Z. Q., Yan H., Liu D. S., Angew. Chem. Int. Ed., 2017, 56, 1586 |
[45] | Zhang Z., Yang Y., Pincet F., Llaguno M. C., Lin C. X., Nat. Chem., 2017, 9(7), 653 |
[46] | Perrault S. T., Shih W. M., ACS Nano, 2014, 8(5), 5132 |
[47] | Zhao Z., Zhang M., Hogle J. M., Shih W. M., Wagner G., Nasr M. L., J. Am. Chem. Soc., 2018, 140, 10639 |
[48] | Yang Y., Wang J., Shigematsu H., Xu W. M., Shih W. M., Rothman J. E., Lin C. X., Nature Chemistry, 2016, 8(5), 476 |
[49] | Burley G. A., Gierlich J., Mofid M. R., Nir H., Tal S., Eichen Y., Carell T., J. Am. Chem. Soc., 2006, 128(5), 1398 |
[50] | Richter J., Seidel R., Kirsch R., Mertig M., Pompe W., Plaschke J., Schackert H. K., Adv. Mater., 2010, 12(7), 507 |
[51] | Ford W. E., Harnack O., Yasuda A., Wessels J. M., Adv. Mater., 2010, 13(23), 1793 |
[52] | Park S. H., Prior M. W., LaBean T. H., Finkelstein G., Appl. Phys. Lett., 2006, 89(3), 033901 |
[53] | Liu D., Park S. H., Reif J. H., LaBean T. H., Proc. Natl. Acad. Sci. USA, 2004, 101(3), 717 |
[54] | Braun E., Eichen Y., Sivan U., Ben-Yoseph G., Nature, 1998, 391(6669), 775 |
[55] | Fischler M., Simon U., Nir H., Eichen Y., Burley G. A., Gierlich J., Small, 2007, 3(6), 1049 |
[56] | Mbindyo J. K. N., Reiss B. D., Martin B. R., Keating C. D., Natan M. J., Mallouk T. E., Adv. Mater., 2001, 13(4), 249 |
[57] | Patolsky F., Weizmann Y., Lioubashevski O., Willner I., Angew. Chem. Int. Ed., 2002, 41(13), 2323 |
[58] | Nguyen K., Monteverde M., Filoramo A., Bourgoin J. P., Adv. Mater., 2008, 20(6), 1099 |
[59] | Antipina M. N., Gainutdinov R. V., Rachnyanskaya A. A., Tolstikhina A. L., Yurova T. V., Khomutov G. B., Surf. Sci., 2003, 532(3), 1025 |
[60] | Suchetan P., Reji V., Deng Z. T., Zhao Z., Ashok K., Yan H., Liu Y., Angew. Chem. Int. Ed., 2011, 50(18), 4176 |
[61] | Wang Z. G., Liu Q., Li N., Ding B. Q., Chem. Mater., 2016, 28(23), 8834 |
[62] | Schreiber R., Kempter S., Holler S., Schüller V., Schiffels D., Simmel S. S., Nickels P. C., Liedl T., Small, 2011, 7(13), 1795 |
[63] | Sun W., Boulais E., Hakobyan Y., Wang W. L., Guan A., Bathe M., Yin P., Science, 2014, 346(6210), 1258361 |
[64] | Helmi S., Ziegler C., Kauert D. J., Seidel R., Nano Lett., 2014, 14(11), 6693 |
[65] | Li N., Shang Y. X., Xu R., Jiang Q., Liu J. B., Wang L., Cheng Z. H., Ding B. Q., J. Am. Chem. Soc., 2019, 141, 17968 |
[66] | Liu B., Cao Y. Y., Che S. A., Angew. Chem. Int. Ed., 2013, 52(52), 14186 |
[67] | Jin C., Han L., Che S., Angew. Chem. Int. Ed., 2009, 48(49), 9268 |
[68] | Liu B., Han L., Che S., Angew. Chem. Int. Ed., 2012, 51(4), 923 |
[69] | Cao Y., Kao K., Mou C., Han L., Che S., Angew. Chem. Int. Ed., 2016, 55, 2037 |
[70] | Liu X., Zhang F., Jing X., Pan M., Liu P., Li W., Zhu B., Li J., Chen H., Wang L., Lin J., Liu Y., Zhao D., Yan H., Fan C. H., Nature, 2018, 559(7715), 593 |
[71] | Nguyen L., Döblinger M., Liedl T., Heuer-Jungemann A., Angew. Chem. Int. Ed., 2018, 58(3), 912 |
[72] | Auyeung E., Macfarlane R. J., Choi C. H. J., Cutler J. I., Mirkin C. A., Adv. Mater., 2012, 24(38), 5181 |
[1] | LIU Zhenyu, DONG Jinyi, PAN Jiahao, ZHOU Chao, FAN Chunhai, WANG Qiangbin. Catalytic DNA Origami-based Chiral Plasmonic Biosensor [J]. Chemical Research in Chinese Universities, 2021, 37(4): 914-918. |
[2] | CAO Mengyao, SUN Yueyang, XIAO Mingshu, LI Li, LIU Xiaohui, JIN Hong, PEI Hao. Multivalent Aptamer-modified DNA Origami as Drug Delivery System for Targeted Cancer Therapy [J]. Chemical Research in Chinese Universities, 2020, 36(2): 254-260. |
[3] | YIN Jue, WANG Junke, NIU Renjie, REN Shaokang, WANG Dexu, CHAO Jie. DNA Nanotechnology-based Biocomputing [J]. Chemical Research in Chinese Universities, 2020, 36(2): 219-226. |
[4] | LONG Qipeng, YU Hanyang, LI Zhe. Reconfigurable Plasmonic Nanostructures Controlled by DNA Origami [J]. Chemical Research in Chinese Universities, 2020, 36(2): 296-300. |
[5] | GE Zhilei, LI Qian, FAN Chunhai. Framework Nucleic Acids for Cell Imaging and Therapy [J]. Chemical Research in Chinese Universities, 2020, 36(1): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||