Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2): 296-300.doi: 10.1007/s40242-020-9078-5
• Articles • Previous Articles Next Articles
LONG Qipeng, YU Hanyang, LI Zhe
Received:
2019-12-02
Revised:
2019-12-25
Online:
2020-04-01
Published:
2020-01-13
Contact:
YU Hanyang, LI Zhe
E-mail:zheli@nju.edu.cn;hanyangyu@nju.edu.cn
Supported by:
LONG Qipeng, YU Hanyang, LI Zhe. Reconfigurable Plasmonic Nanostructures Controlled by DNA Origami[J]. Chemical Research in Chinese Universities, 2020, 36(2): 296-300.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Hariadi R. F., Cale M., Sivaramakrishnan S., Proc. Natl. Acad. Sci. U.S.A., 2014, 111(11), 4091 |
[2] | Lin C. X., Jungmann R., Leifer A. M., Li C., Levner D., Church G. M., Shih W. M., Yin P., Nat. Chem., 2012, 4(10), 832 |
[3] | Lin D. C., Liu Y. Y., Liang Z., Lee H. W., Sun J., Wang H. T., Yan K., Xie J., Cui Y., Nat. Nanotech., 2016, 11, 626 |
[4] | Wang C. Y., Xia K. L., Wang H. M., Liang X. P., Yin Z., Zhang Y. Y., Adv. Mater., 2019, 31(9), 1801072 |
[5] | Copp S. M., Schultz D. E., Swasey S., Gwinn E. G., ACS Nano, 2015, 9(3), 2303 |
[6] | Lohse S. E., Murphy C. J., J. Am. Chem. Soc., 2012, 134(38), 15607 |
[7] | Pawar A. B., Kretzschmar I., Langmuir, 2009, 25(16), 9057 |
[8] | Zhang G., Wang D. Y., Möhwald H., Nano Lett., 2005, 5(1), 143 |
[9] | Jones M. R., Osberg K. D., Macfarlane R. J., Langille M. R., Mirkin, C. A., Chem. Rev., 2011, 111(6), 3736 |
[10] | Shen C. Q., Lan X., Lu X. X., Nia W. H., Wang Q. B., Chem. Commun., 2015, 51(71), 13627 |
[11] | Urban M. J., Dutta P. K., Wang P. F., Duan X. Y., Shen X. B., Ding B. Q., Ke Y. G., Liu N., J. Am. Chem. Soc., 2016, 138(17), 5495 |
[12] | Tian Y., Wang T., Liu W. Y., Xin H. L., Li H. L., Ke Y. G., Shih W. M., Gang O., Nat. Nanotechnol., 2015, 10, 637 |
[13] | Gür F. N., Schwarz F. W., Ye J. J., Diez S., Schmidt T. L., ACS Nano, 2016, 10(5), 5374 |
[14] | Deng Z. T., Samanta A., Nangreave J., Yan H., Liu Y., J. Am. Chem. Soc., 2012, 134(42), 17424 |
[15] | Pilo-Pais M., Watson A., Demers S., LaBean T. H., Finkelstein G., Nano Lett., 2014, 14(4), 2099 |
[16] | Pal S., Dutta P., Wang H. N., Deng Z. T., Zou S. L., Yan H., Liu Y., J. Phys. Chem. C, 2013, 117(24), 12735 |
[17] | Rothemund P. W. K., Nature, 2006, 440(7082), 297 |
[18] | Hong F., Zhang F., Liu Y., Yan H., Chem. Rev., 2017, 117(20), 12584 |
[19] | Schreiber R., Do J., Roller E. M., Zhang T., Schüller V. J., Nickels P. C., Feldmann J., Liedl T., Nat. Nanotech., 2013, 9, 74 |
[20] | Vincenzo A., Roberto P., Marco F., Onofrio M. M., Maria A. I., J. Phys. Condens. Matter., 2017, 29(20), 203002 |
[21] | Manheller M., Karthäuser S., Waser R., Blech K., Simon U., J. Phys. Chem. C, 2012, 116(39), 20657 |
[22] | Yang X., Yang M. X., Pang B., Vara M., Xia Y. N., Chem. Rev., 2015, 115(19), 10410 |
[23] | Zhao W. A., Chiuman W., Lam J. C. F., McManus S. A., Chen W., Cui Y. G., Pelton R., Brook M. A., Li Y. F., J. Am. Chem. Soc., 2008, 130(11), 3610 |
[24] | Zeng Y. Y., Zhang D., Wu M., Liu Y., Zhang X., Li L., Li Z., Han X., Wei X. Y., Liu X. L., ACS Appl. Mater. Interfaces, 2014, 6(16), 14266 |
[25] | Ding B. Q., Deng Z. T., Yan H., Cabrini S., Zuckermann R. N., Bokor J., J. Am. Chem. Soc., 2010, 132(10), 3248 |
[26] | Shen X. B., Song C., Wang J. Y., Shi D. W., Wang Z. G., Liu N., Ding B. Q., J. Am. Chem. Soc., 2012, 134(1), 146 |
[27] | Kuzyk A., Schreiber R., Fan Z. Y., Pardatscher G., Roller E. M., Högele A., Simmel F. C., Govorov A. O., Liedl T., Nature, 2012, 483(7389), 311 |
[28] | Zhou C., Duan X. Y., Liu N., Nat. Commun., 2015, 6(1), 8102 |
[29] | Urban M. J., Both S., Zhou C., Kuzyk A., Lindfors K., Weiss T., Liu N., Nat. Commun., 2018, 9(1), 1454 |
[30] | Shen C. Q., Lan X., Lu X. X., Meyer T. A., Ni W. H., Ke Y. G., Wang Q. B., J. Am. Chem. Soc., 2016, 138(6), 1764 |
[31] | Bohren C. F., Huffman D. R., Opt. Laser Technol., 1998, 31, 328 |
[32] | Kelly K. L., Coronado E., Zhao L. L., Schatz, G. C., J. Phys. Chem. B, 2003, 107(3), 668 |
[1] | ZONG Chen, LIU Guangnan, XU Wenhao, CHEN Jie, TANG Yun. Block Copolymer Supported Gold Nanoparticles Assemblies with Exposed Gold Surface [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1118-1122. |
[2] | LIU Zhenyu, DONG Jinyi, PAN Jiahao, ZHOU Chao, FAN Chunhai, WANG Qiangbin. Catalytic DNA Origami-based Chiral Plasmonic Biosensor [J]. Chemical Research in Chinese Universities, 2021, 37(4): 914-918. |
[3] | ZHU Jinjin, SHANG Yingxu, YU Haiyin, LI Na, DING Baoquan. Shape-controllable Synthesis of Functional Nanomaterials on DNA Templates [J]. Chemical Research in Chinese Universities, 2020, 36(2): 171-176. |
[4] | CAO Mengyao, SUN Yueyang, XIAO Mingshu, LI Li, LIU Xiaohui, JIN Hong, PEI Hao. Multivalent Aptamer-modified DNA Origami as Drug Delivery System for Targeted Cancer Therapy [J]. Chemical Research in Chinese Universities, 2020, 36(2): 254-260. |
[5] | YIN Jue, WANG Junke, NIU Renjie, REN Shaokang, WANG Dexu, CHAO Jie. DNA Nanotechnology-based Biocomputing [J]. Chemical Research in Chinese Universities, 2020, 36(2): 219-226. |
[6] | GE Zhilei, LI Qian, FAN Chunhai. Framework Nucleic Acids for Cell Imaging and Therapy [J]. Chemical Research in Chinese Universities, 2020, 36(1): 1-9. |
[7] | DONG Pengfei, LI Na, ZHAO Haiyan, CUI Min, ZHANG Cong, HAN Hongyan, REN Jujie. POMs as Active Center for Sensitively Electrochemical Detection of Bisphenol A and Acetaminophen [J]. Chemical Research in Chinese Universities, 2019, 35(4): 592-597. |
[8] | ZHENG Jingyi, FENG Rongrong, HE Caimei and LI Xiaoxia. Graphene-Gold Nanoparticle-modified Electrochemical Sensor for Detection of Kanamycin Based on Target-induced Aptamer Displacement [J]. Chemical Research in Chinese Universities, 2018, 34(6): 952-958. |
[9] | WANG Shumin, YAN Xiaoxia, ZHU Yan, DENG Dongmei, HE Haibo, LUO Liqiang. Au Nanoparticles Loaded on Hollow TiO2 Microspheres with (001) Exposed Facets: a Strategy for Promoting Photocatalytic Performance [J]. Chemical Research in Chinese Universities, 2018, 34(5): 705-710. |
[10] | FENG Huiyun, GAO Lei, YE Xinhui, WANG Lei, XUE Zechun, KONG Jinming, LI Lianzhi. Synthesis of a Heptapeptide and Its Application in the Detection of Mercury(II) Ion [J]. Chemical Research in Chinese Universities, 2017, 33(2): 155-159. |
[11] | MA Xiaoyu, YANG Jianmao, CAI Wenshu, ZHU Guodong, LIU Jianyun. Preparation of Au Nanoparticles Decorated Polyaniline Nanotube and Its Catalytic Oxidation to Ascorbic Acid [J]. Chemical Research in Chinese Universities, 2016, 32(4): 702-708. |
[12] | ZHOU Chao, MU Ying, YANG Meng-chao, WU Qing-qing, XU Wei, ZHANG Ying, JIN Wei, SONG Qi, WU Zhong-yu, JIN Qin-han. Gold Nanoparticles Based Colorimetric Detection of Target DNA After Loop-mediated Isothermal Amplification [J]. Chemical Research in Chinese Universities, 2013, 29(3): 424-428. |
[13] | HOU Qiong, WANG Jin-e, LIU Xia, LI Xiao-kun, MA Li-na, DUAN Wu-biao, WANG Zhen-xin. Detection of Lectins by Saccharide-gold Nanoparticle Conjugates [J]. Chemical Research in Chinese Universities, 2012, 28(6): 947-952. |
[14] | TENG Hong, LIU Yang and YOU Tian-yan*. Facile Synthesis of Gold Nanoparticle-loaded Carbon Nanofiber Composites and Their Electrocatalytic Activity Towards Dopamine, Ascorbic Acid and Uric Acid [J]. Chemical Research in Chinese Universities, 2011, 27(3): 496-499. |
[15] | WANG Jin-e, WANG Cheng-ke, LIU Dian-jun and WANG Zhen-xin*. Lectin Conjugated Gold Nanoparticle-based Colorimetric Assay for Studying the Interactions of Antibiotic with Living Cell [J]. Chemical Research in Chinese Universities, 2011, 27(2): 193-197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||