Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2): 222-236.doi: 10.1007/s40242-025-4239-1
• Reviews • Previous Articles Next Articles
LIU Liangwei1,3, FENG Shiqiang1,2, HAN Lili1
Received:
2024-12-13
Accepted:
2025-02-20
Online:
2025-04-01
Published:
2025-03-31
Contact:
HAN Lili,llhan@fjirsm.ac.cn
E-mail:llhan@fjirsm.ac.cn
Supported by:
LIU Liangwei, FENG Shiqiang, HAN Lili. Chemical-sensitive Electron Tomography for Nanomaterials[J]. Chemical Research in Chinese Universities, 2025, 41(2): 222-236.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Gilbert B., Cavoue T., Aouine M., Burel L., Aires F. J. C. S., Caravaca A., Rieu M., Viricelle J. P., Bruyère S., Horwat D., Migot S., Vilasi P., Vernoux P., Electrochim Acta, 2021, 394, 139018. [2] Zhang J., Wang L., Shao Y., Wang Y. Q., Gates B. C., Xiao F. S., Angew. Chem. Int. Ed. Engl., 2017, 56, 9747. [3] Jiang X., Koizumi N., Guo X. W., Song C. S., Appl. Catal. B, 2015, 170, 173. [4] Shang K. S., Wang S. J., Chen S. Y., Wang X., Biosensors, 2022, 12, 588. [5] Yang W. B., Niu S. Q., Wang Y., Huang L. J., Wang S. C., Popat K. C., Kipper M. J., Belfiore L. A., Tang J., Nanomaterials, 2021, 11, 3283. [6] Al-Gethami W., Alhashmialameer D., Al-Qasmi N., Ismail S. H., Sadek A. H., Nanomaterials, 2022, 12, 3620. [7] Pan W. X., Liu R. B., Xie R. H., Zhuang Y. Z., Mao X. K., Zhang Y. M., IEEE Trans. Power Electron., 2024, 40, 6272. [8] Tang H. M., Liu C., Pan W. X., Rao P. Y., Zhuang Y. Z., Chen X. Y., Zhang Y. M., IEEE Trans. Power Electron., 2024, 40, 4630. [9] Zhang R., Wang C. Y., Zou P. C., Lin R. Q., Ma L., Yin L., Li T. Y., Xu W. Q., Jia H., Li Q. Y., Sainio S., Kisslinger K., Trask S. E., Ehrlich S. N., Yang Y., Kiss A. M., Ge M., Polzin B. J., Lee S. J., Xu W., Ren Y., Xin H. L., Nature, 2022, 610, 67. [10] Wang C. Y., Han L. L., Zhang R., Cheng H., Mu L. Q., Kisslinger K., Zou P. C., Ren Y., Cao P. H., Lin F., Xin H. L., Matter, 2021, 4, 2013. [11] Lin R. Q., He Y. B., Wang C. Y., Zou P. C., Hu E. Y., Yang X. Q., Xu K., Xin H. L., Nat. Nanotechnol., 2022, 17, 768. [12] Wang C. Y., Jing Y. Q., Zhu D., Xin H. L., J. Am. Chem. Soc., 2024, 146, 17712. [13] Wang C. Y., Lin R. Q., He Y. B., Zou P. C., Kisslinger K., He Q., Li J., Xin H. L., Adv. Mater., 2023, 35, 2209091. [14] Cherukara M. J., Pokharel R., O’Leary T. S., Baldwin J. K., Maxey E., Cha W., Maser J., Harder R. J., Fensin S. J., Sandberg R. L., Nat. Commun., 2018, 9, 3776. [15] Drábik M., Pešička J., Biederman H., Hegemann D., Sci. Technol. Adv. Mater., 2015, 16, 025005. [16] Weyland M., Yates T. J. V., Dunin-Borkowski R. E., Laffont L., Midgley P. A., Scr. Mater., 2006, 55, 29. [17] Volkmann N., Biophys. J., 2012, 102, 394a. [18] Zhang L. J., Hu H. H., Sun C., Xiao D. D., Wang H. T., Xiao Y., Zhao S. W., Chen K. H., Lin W. X., Shao Y. C., Wang X. Y., Pao C. W., Han L. L., Nat. Commun., 2024, 15, 7179. [19] Wang C. Y., Du K., Song K. P., Ye X., Qi L., He S., Tang D. M., Lu N., Jin H. J., Li F., Ye H. Q., Phys. Rev. Lett., 2018, 120, 186102. [20] Wang C. Y., Duan H. C., Chen C. J., Wu P., Qi D. Q., Ye H. Q., Jin H. J., Xin H. L., Du K., Matter, 2020, 3, 1999. [21] Wang C. Y., Liu H. Y., Duan H. C., Li Z. W., Zeng P. L., Zou P. C., Wang X. L., Ye H. Q., Xin H. L., Du K., J. Mater. Chem. A, 2021, 9, 25513. [22] Wu Z. H., Wang C. Y., Hui Z. Y., Liu H. D., Wang S., Yu S. C., Xing X., Holoubek J., Miao Q. S., Xin H. L., Liu P., Nat. Energy, 2023, 8, 340. [23] Buzug T. M., Springer Handbook of Medical Technology, Springer, Berlin, Heidelberg, 2011. [24] Weyland M., Midgley P. A. Mater., Today, 2004, 7, 32. [25] Withers P. J., Bouman C., Carmignato S., Cnudde V., Grimaldi D., Hagen C. K., Maire E., Manley M., Du Plessis A., Stock S. R., Nat. Rev. Methods Primer, 2021, 1, 1. [26] Leary R. K., Midgley P. A., Springer Handbook of Microscopy, Springer International Publishing, Cham, 2019. [27] Collins S. M., Midgley P. A., Ultramicroscopy, 2017, 180, 133. [28] Leary R. K., Midgley P. A., MRS Bull., 2016, 41, 531. [29] Lin Y., Zhou M., Tai X. L., Li H. F., Han X., Yu J. G., Matter, 2021, 4, 2309. [30] Slater T. J. A., Macedo A., Schroeder S. L. M., Burke M. G., O’Brien P., Camargo P. H. C., Haigh S. J., Nano Lett., 2014, 14, 1921. [31] Williams D. B., Carter C. B., Transmission Electron Microscopy: A Textbook for Materials Science, 2nd Ed., Springer, New York, 2008. [32] Wang Z. L., Yin J. S., Jiang Y. D., Micron., 2000, 31, 571. [33] Daulton T. L., Little B. J., Ultramicroscopy, 2006, 106, 561. [34] Zanaga D., Bleichrodt F., Altantzis T., Winckelmans N., Palenstijn W. J., Sijbers J., de Nijs B., van Huis M. A., Sánchez-Iglesias A., Liz-Marzán L. M., van Blaaderen A., Joost Batenburg K., Bals S., Van Tendeloo G., Nanoscale, 2016, 8, 292. [35] Pryor A. Jr., Yang Y., Rana A., Gallagher-Jones M., Zhou J. H., Lo H. Y., Melinte G., Rodriguez J. A., Miao J. W., Microsc. Microanal., 2017, 23, 128. [36] Jenkinson K., Liz-Marzán L. M., Bals S., Adv. Mater., 2022, 34, 2110394. [37] Radermacher M., Electron Tomography: Three-Dimensional Imaging with the Transmission Electron Microscope; Springer, Boston, 1992. [38] Gilbert P., J. Theor. Biol., 1972, 36, 105. [39] Han L. L., Meng Q. P., Wang D. L., Zhu Y. M., Wang J., Du X. W., Stach E. A., Xin H. L., Nat. Commun., 2016, 7, 1. [40] Wang C. Y., Ding G. L., Liu Y. T., Xin H. L., Adv. Intell. Syst., 2020, 2, 2000152. [41] Yalisove R., Sung S. H., Ercius P., Hovden R., Phys. Rev. Appl., 2021, 15, 014003. [42] Touve M. A., Carlini A. S., Gianneschi N. C., Nat. Commun., 2019, 10, 4837. [43] García de Arquer F. P., Talapin D. V., Klimov V. I., Arakawa Y., Bayer M., Sargent E. H., Science, 2021, 373, eaaz8541. [44] Wu H. L., Li X. B., Tung C. H., Wu L. Z., Adv. Mater., 2019, 31, 1900709. [45] Biju V., Itoh T., Anas A., Sujith A., Ishikawa M., Anal. Bioanal. Chem., 2008, 391, 2469. [46] Han Y., Jang J., Cha E., Lee J., Chung H., Jeong M., Kim T. G., Chae B. G., Kim H. G., Jun S., Hwang S., Lee E., Ye J. C., Nat. Mach. Intell., 2021, 3, 267. [47] Cha E., Chung H., Jang J., Lee J., Lee E., Ye J. C., ACS Nano, 2022, 16, 10314. [48] Chakraborty S., Mali K., Appl. Soft Comput., 2022, 129, 109625. [49] Bak N., Ebdrup B. H., Oranje B., Fagerlund B., Jensen M. H., Düring S. W., Nielsen M. Ø., Glenthøj B. Y., Hansen L. K., Transl. Psychiatry, 2017, 7, e1087. [50] Skorikov A., Heyvaert W., Albecht W., Pelt D. M., Bals S., Nanoscale, 2021, 13, 12242. [51] Grzonka J., Marqueses-Rodríguez J., Fernández-García S., Chen X. W., Calvino J. J., López-Haro M., Adv. Intell. Syst., 2023, 5, 2200231. [52] Kim H. K., Ha H. Y., Bae J. H., Cho M. K., Kim J., Han J., Suh J. Y., Kim G. H., Lee T. H., Jang J. H., Chun D., Sci. Rep., 2020, 10, 1. [53] Lahat D., Adali T., Jutten C., Proc. IEEE, 2015, 103, 1449. [54] Yuan Y., MacArthur K. E., Collins S. M., Brodusch N., Voisard F., Dunin-Borkowski R. E., Gauvin R., Ultramicroscopy, 2021, 220, 113166. [55] Calhoun V. D., Sui J., Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2016, 1, 230. [56] Schwartz J., Di Z. W., Jiang Y., Manassa J., Pietryga J., Qian Y. W., Cho M. G., Rowell J. L., Zheng H. H., Robinson R. D., Gu J., Kirilin A., Rozeveld S., Ercius P., Fessler J. A., Xu T., Scott M., Hovden R., Nat. Commun., 2024, 15, 1. [57] Huber R., Haberfehlner G., Holler M., Kothleitner G., Bredies K., Nanoscale, 2019, 11, 5617. [58] Zhong Z. C., Goris B., Schoenmakers R., Bals S., Batenburg K. J., Ultramicroscopy, 2017, 174, 35. [59] Zhong Z. C., Palenstijn W. J., Adler J., Batenburg K. J., Ultramicroscopy, 2018, 191, 34. [60] An V., Potgieter H., Usoltseva N., Valiev D., Stepanov S., Pustovalov A., Baryshnikov A., Titov M., Dolinina A., Nanomaterials, 2021, 11, 157. [61] Ruan L. F., Zhang Y., Nat. Commun., 2021, 12, 219. [62] Mukherjee P., Lim S. J., Wrobel T. P., Bhargava R., Smith A. M., J. Am. Chem. Soc., 2016, 138, 10887. [63] Xia W. W., Yang Y., Meng Q. P., Deng Z. P., Gong M. X., Wang J., Wang D. L., Zhu Y. M., Sun L. T., Xu F., Li J., Xin H. L., ACS Nano, 2018, 12, 7866. [64] Goris B., Polavarapu L., Bals S., Van Tendeloo G., Liz-Marzán L. M., Nano Lett., 2014, 14, 3220. [65] Liakakos N., Gatel C., Blon T., Altantzis T., Lentijo-Mozo S., Garcia-Marcelot C., Lacroix L.-M., Respaud M., Bals S., Van Tendeloo G., Soulantica K., Nano Lett., 2014, 14, 2747. [66] Sanna Angotzi M., Musinu A., Mameli V., Ardu A., Cara C., Niznansky D., Xin H. L., Cannas C., ACS Nano, 2017, 11, 7889. [67] Krivanek O. L., Dellby N., Hachtel J. A., Idrobo J.-C., Hotz M. T., Plotkin-Swing B., Bacon N. J., Bleloch A. L., Corbin G. J., Hoffman M. V., Meyer C. E., Lovejoy T. C., Ultramicroscopy, 2019, 203, 60. [68] Yin Y. D., Rioux R. M., Erdonmez C. K., Hughes S., Somorjai G. A., Alivisatos A. P., Science, 2004, 304, 711. [69] Anderson B. D., Tracy J. B., Nanoscale, 2014, 6, 12195. [70] Polavarapu L., Zanaga D., Altantzis T., Rodal-Cedeira S., Pastoriza-Santos I., Pérez-Juste J., Bals S., Liz-Marzán L. M., J. Am. Chem. Soc., 2016, 138, 11453. [71] Fu B. Z., Gribelyuk M. A., J. Appl. Phys., 2018, 123, 161554. [72] Farooq U., Ahmad T., Naaz F., Islam S. U., Energy Fuels, 2023, 37, 1577. [73] Wang D., Astruc D., Chem. Soc. Rev., 2017, 46, 816. [74] Mondal A., Biswas S., Srishti, Kumar A., Yu J. S., Sinhamahapatra A., Nanoscale Adv., 2020, 2, 4473. [75] Sun H. Y., Hua Q., Guo F. F., Wang Z. Y., Huang W. X., Adv. Synth. Catal., 2012, 354, 569. [76] Park E. J., Lee J. H., Kim K. D., Kim D. H., Jeong M. G., Kim Y. D., Catal. Today, 2016, 260, 100. [77] Goris B., Turner S., Bals S., Van Tendeloo G., ACS Nano, 2014, 8, 10878. [78] Sayle D. C., Maicaneanu S. A., Watson G. W., J. Am. Chem. Soc., 2002, 124, 11429. [79] Feld A., Weimer A., Kornowski A., Winckelmans N., Merkl J.-P., Kloust H., Zierold R., Schmidtke C., Schotten T., Riedner M., Bals S., Weller H., ACS Nano, 2019, 13, 152. [80] Goris B., Meledina M., Turner S., Zhong Z., Batenburg K. J., Bals S., Ultramicroscopy, 2016, 171, 55. [81] Sun X. L., Frey Huls N., Sigdel A., Sun S. H., Nano Lett., 2012, 12, 246. [82] Kavich D. W., Dickerson J. H., Mahajan S. V., Hasan S. A., Park J.-H., Phys. Rev. B, 2008, 78, 174414. [83] Anker J. N., Hall W. P., Lyandres O., Shah N. C., Zhao J., Van Duyne R. P., Nat. Mater., 2008, 7, 442. [84] Guo L. H., Jackman J. A., Yang H. H., Chen P., Cho N. J., Kim D. H., Nano Today, 2015, 10, 213. [85] García I., Mosquera J., Plou J., Liz-Marzán L. M., Adv. Opt. Mater., 2018, 6, 1800680. [86] Farooq S., Wali F., Zezell D. M., de Araujo R. E., Rativa D., Polymers, 2022, 14, 1592. [87] Wysocka I., Kowalska E., Ryl J., Nowaczyk G., Zielińska-Jurek A., Nanomaterials, 2019, 9, 1129. [88] Yao G. Y., Liu Q. L., Zhao Z. Y., Catalysts, 2018, 8, 236. [89] Chen X. J., Cabello G., Wu D. Y., Tian Z. Q., J. Photochem. Photobiol. C, Photochem. Rev., 2014, 21, 54. [90] Elibol K., van Aken P. A., ACS Nano, 2022, 16, 11931. [91] Joseph J Armao I. V., Nyrkova I., Fuks G., Osypenko A., Maaloum M., Moulin E., Arenal R., Gavat O., Semenov A., Giuseppone N., J. Am. Chem. Soc., 2017, 139, 2345. [92] Wu Y. Y., Li G. L., Camden J. P., Chem. Rev., 2018, 118, 2994. [93] Li G. L., Cherqui C., Wu Y., Bigelow N. W., Simmons P. D., Rack P. D., Masiello D. J., Camden J. P., J. Phys. Chem. Lett., 2015, 6, 2569. [94] Koh A. L., Fernández-Domínguez A. I., McComb D. W., Maier S. A., Yang J. K. W., Nano Lett., 2011, 11, 1323. [95] Nicoletti O., de la Peña F., Leary R. K., Holland D. J., Ducati C., Midgley P. A., Nature, 2013, 502, 80. [96] Archanjo B. S., Vasconcelos T. L., Oliveira B. S., Song C., Allen F. I., Achete C. A., Ercius P., ACS Photonics, 2018, 5, 2834. [97] Mayer K. M., Hafner J. H., Chem. Rev., 2011, 111, 3828. [98] Li X., Anwer S., Guan Q. S., Anjum D. H., Palmisano G., Zheng L. X., Adv. Sci., 2022, 9, 2200346. [99] Shao Y. X., You D., Wan Y. Q., Cheng Q. R., Pan Z. Q., React. Chem. Eng., 2024, 9, 70. [100] Zhang J., Zhang X. L., Li J., Ma Z. Y., Leng B., Xia Q. X., Shen L. H., Song Y. D., Fu Z. W., Feng S. Y., Feng L. Z., Liu Z. T., Yuldashev S., Jiang X., Liu B. D., Opt. Mater., 2022, 124, 111997. [101] Ding R. Q., Dai H., Li M. C., Huang J. J., Li Y. F., Trevor M., Musselman K. P., Appl. Phys. Lett., 2014, 104, 011602. [102] Kusada K., Wu D. S., Yamamoto T., Toriyama T., Matsumura S., Xie W., Koyama M., Kawaguchi S., Kubota Y., Kitagawa H., Chem. Sci., 2019, 10, 652. [103] Liu G. X., Liu J. F., Zhou W. J., Li L. Y., You C. L., Qiu C. W., Wu L., Nanophotonics, 2023, 12, 1943. [104] Yan Y., Luo Y. J., Opt. Laser Technol., 2023, 164, 109558. [105] García de Abajo F. J., Kociak M., Phys. Rev. Lett., 2008, 100, 106804. [106] Hörl A., Haberfehlner G., Trügler A., Schmidt F. P., Hohenester U., Kothleitner G., Nat. Commun., 2017, 8, 37. [107] Hörl A., Haberfehlner G., Trügler A., Schmidt F.-P., Hohenester U., Kothleitner G., Nat. Commun., 2017, 8, 37. [108] Haberfehlner G., Schmidt F.-P., Schaffernak G., Hoerl A., Truegler A., Hohenau A., Hofer F., Krenn J. R., Hohenester U., Kothleitner G., Nano Lett., 2017, 17, 6773. [109] Li X. Y., Haberfehlner G., Hohenester U., Stéphan O., Kothleitner G., Kociak M., Science, 2021, 371, 1364. [110] Tong, Rice C., Godbout N., Wieckowski A., Oldfield E., J. Am. Chem. Soc., 1999, 121, 2996. [111] Thomas J. A. Slater, Janssen A., Camargo P. H. C., Burke M. G., Zaluzec N. J., Haigh S. J., Ultramicroscopy, 2016, 162, 61. [112] Reguera J., Jiménez de Aberasturi D., Winckelmans N., Langer J., Bals S., Liz-Marzán L. M., Faraday Discuss., 2016, 191, 47. [113] Pedrazo-Tardajos A., ArslanIrmak E., Kumar V., Sánchez-Iglesias A., Chen Q., Wirix M., Freitag B., Albrecht W., VanAert S., Liz-Marzán L., Bals S., ACS Nano, 2022, 16, 9608. [114] Saghi Z., Xu X., Peng Y., Inkson B., Möbus G., Appl. Phys. Lett., 2007, 91, 251906. [115] Genc A., Kovarik L., Gu M., Cheng H. K., Plachinda P., Pullan L., Freitag B., Wang C. M., Ultramicroscopy, 2013, 131, 24. [116] Mahr C., Kundu P., Lackmann A., Zanaga D., Thiel K., Schowalter M., Schwan M., Bals S., Wittstock A., Rosenauer A., J. Catal., 2017, 352, 52. [117] Skorikov A., Albrecht W., Bladt E., Xie X. B., van der Hoeven J. E. S., van Blaaderen A., Van Aert S., Bals S., ACS Nano, 2019, 13, 13421. [118] González-Rubio G., Díaz-Núñez P., Albrecht W., Manzaneda-González V., Bañares L., Rivera A., Liz-Marzán L. M., Peña-Rodríguez O., Bals S., Guerrero-Martínez A., Adv. Opt. Mater., 2021, 9, 2002134. [119] Lepinay K., Lorut F., Pantel R., Epicier T., Micron, 2013, 47, 43. [120] Torruella P., Arenal R., de la Peña F., Saghi Z., Yedra L., Eljarrat A., López-Conesa L., Estrader M., López-Ortega A., Salazar-Alvarez G., Nogués J., Ducati C., Midgley P. A., Peiró F., Estradé S., Nano Lett., 2016, 16, 5068. [121] Yedra L., Eljarrat A., Arenal R., Pellicer E., Cabo M., Lopez-Ortega A., Estrader M., Sort J., Dolors Baro M., Estrade S., Peiro F., Ultramicroscopy, 2012, 122, 12. [122] Jarausch K., Thomas P., Leonard D. N., Twesten R., Booth C. R., Ultramicroscopy, 2009, 109, 326. [123] Yedra L., Eljarrat A., Rebled J. M., López-Conesa L., Dix N., Sánchez F., Estradé S., Peiró F., Nanoscale, 2014, 6, 6646. [124] Collins S. M., Ringe E., Duchamp M., Saghi Z., Dunin-Borkowski R. E., Midgley P. A., ACS Photonics, 2015, 2, 1628. [125] Sun C., Liu K., Zhang J., Liu Q., Liu X. J., Han L. L., Chin. J. Struct. Chem., 2022, 41, 2210056. |
[1] | CAO Mengyu, XING Xiner, SHEN Xiaotong, OUYANG Jin, NA Na. A Review on Nanomaterial-based Strategies for Manipulating Tumor Microenvironment to Enhance Chemodynamic Therapy [J]. Chemical Research in Chinese Universities, 2024, 40(2): 202-212. |
[2] | ZHANG Yi, ZHOU Bokai, LI Qiuning, JIN Mingshi, BAI Yu. Nanomaterial Assisted Exosome Analysis Using Mass Spectrometry [J]. Chemical Research in Chinese Universities, 2024, 40(2): 237-254. |
[3] | WANG Xinyi, ZHAO Zhenwei, ZAHRA Kiran, LI Junjun, ZHANG Zhicheng. Sub-nanomaterials for Photo/Electro-catalytic CO2 Reduction: Achievements, Challenges, and Opportunities [J]. Chemical Research in Chinese Universities, 2023, 39(4): 580-598. |
[4] | REN Chongyuan, BAI Rui, CHEN Wei, LI Junpeng, ZHOU Xudong, TIAN Xiaochun, ZHAO Feng. Advances in Nanomaterial-microbe Coupling System for Removal of Emerging Contaminants [J]. Chemical Research in Chinese Universities, 2023, 39(3): 389-394. |
[5] | YI Jiaqi, LI Xiaoshuang, CUI Di, HAN Lixia, JIANG Wei, ZHANG Renguo, NIU Na, CHEN Ligang. Fabricating UCNPs-AuNPs Fluorescent Probe for Sensitive Sensing Thiamphenicol [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1453-1460. |
[6] | WANG Guowei, KE Xiaoxing, SUI Manling. Advanced TEM Characterization for Single-atom Catalysts: from Ex-situ Towards In-situ [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1172-1184. |
[7] | CHU Binbin, WANG Houyu, HE Yao. Fluorescent Silicon-based Nanomaterials Imaging Technology in Diseases [J]. Chemical Research in Chinese Universities, 2021, 37(4): 880-888. |
[8] | SUN Rongbo, GUO Wenxin, HAN Xiao, HONG Xun. Two-dimensional Noble Metal Nanomaterials for Electrocatalysis [J]. Chemical Research in Chinese Universities, 2020, 36(4): 597-610. |
[9] | PAN Lu, DONG Jinyang, YI Ding, YANG Yijun, WANG Xi. Recent Advances in Atomic-scale Storage Mechanism Studies of Two-dimensional Nanomaterials for Rechargeable Batteries Beyond Li-ion [J]. Chemical Research in Chinese Universities, 2020, 36(4): 560-583. |
[10] | ZHU Jinjin, SHANG Yingxu, YU Haiyin, LI Na, DING Baoquan. Shape-controllable Synthesis of Functional Nanomaterials on DNA Templates [J]. Chemical Research in Chinese Universities, 2020, 36(2): 171-176. |
[11] | FU Xuancheng, BAI Haotian, LYU Fengting, LIU Libing, WANG Shu. Conjugated Polymer Nanomaterials for Phototherapy of Cancer [J]. Chemical Research in Chinese Universities, 2020, 36(2): 237-242. |
[12] | WANG Jianmin, CAO Feng, DENG Ruiping, HUANG Lijian, LI Song, CAI Jiajia, LÜ Xin, QIN Gaowu. Structural and Morphological Modulation of BiOCl Visible-light Photocatalyst Prepared via an In situ Oxidation Synthesis [J]. Chemical Research in Chinese Universities, 2016, 32(3): 338-342. |
[13] | YUAN Rui-rui, WU Da-peng, JIANG Yi, LI Xia, ZHAO Min and JIANG Kai*. Hydrothermal Synthesis of AgLnMo2O8(Ln=La, Nd, Eu) Hierarchical Structures: Growth Mechanism and Photoluminescence Property [J]. Chemical Research in Chinese Universities, 2010, 26(4): 505-508. |
[14] | WANG Bo , TENG Li-rong , WANG Chun-yan , MENG Qing-fan , ZHAO Ling-zhi , GAO Bo . Protein Adsorption onto Nanosized Hydroxyapatite Particles for Controlled Drug Release [J]. Chemical Research in Chinese Universities, 2007, 23(3): 254-257. |
[15] | LIU Jin-ku, WU Qing-sheng, DING Ya-ping. Assembling Synthesis of BaSO4 Biomimetic Nano-superstructures through Eggshell Membrane Template [J]. Chemical Research in Chinese Universities, 2005, 21(2): 243-245. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||