Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4): 597-610.doi: 10.1007/s40242-020-0183-2
• Reviews • Previous Articles Next Articles
SUN Rongbo, GUO Wenxin, HAN Xiao, HONG Xun
Received:
2020-06-14
Revised:
2020-06-30
Online:
2020-08-01
Published:
2020-07-30
Contact:
HONG Xun
E-mail:hongxun@ustc.edu.cn
Supported by:
SUN Rongbo, GUO Wenxin, HAN Xiao, HONG Xun. Two-dimensional Noble Metal Nanomaterials for Electrocatalysis[J]. Chemical Research in Chinese Universities, 2020, 36(4): 597-610.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Tan C., Cao X., Wu X. J., He Q., Yang J., Zhang X., Chen J., Zhao W., Han S., Nam G. H., Sindoro M., Zhang H., Chem. Rev.,2017, 117, 6225 |
[2] | Nasilowski M., Mahler B., Lhuillier E., Ithurria S., Dubertret B., Chem. Rev.,2016, 116, 10934 |
[3] | Jin H., Guo C., Liu X., Liu J., Vasileff A., Jiao Y., Zheng Y., Qiao S. Z., Chem. Rev.,2018, 118, 6337 |
[4] | Deng D., Novoselov K. S., Fu Q., Zheng N., Tian Z., Bao X., Nat. Nanotechnol.,2016, 11, 218 |
[5] | Xia Y., Yang X., Accounts Chem. Res.,2017, 50, 450 |
[6] | Luo Y., Liu Z., Wu G., Wang G., Chao T., Li H., Liu J., Hong X., Chin. Chem. Lett.,2019, 30, 1093 |
[7] | Ge Y., Shi Z., Tan C., Chen Y., Cheng H., He Q., Zhang H., Chem.,2020, 6, 1237 |
[8] | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science,2004, 306, 666 |
[9] | Nair R. R., Blake P., Grigorenko A. N., Novoselov K. S., Booth T. J., Stauber T., Peres N. M., Geim A. K., Science,2008, 320, 1308 |
[10] | Weng Q., Wang X., Wang X., Bando Y., Golberg D., Chem. Soc. Rev.,2016, 45, 3989 |
[11] | Zhang J., Chen Y., Wang X., Energy Environ. Sci.,2015, 8, 3092 |
[12] | Hong X., Tan C., Chen J., Xu Z., Zhang H., Nano Res.,2014, 8, 40 |
[13] | Peng Y., Li Y., Ban Y., Jin H., Jiao W., Liu X., Yang W., Science,2014, 346, 1356 |
[14] | Peng Y., Huang Y., Zhu Y., Chen B., Wang L., Lai Z., Zhang Z., Zhao M., Tan C., Yang N., Shao F., Han Y., Zhang H., J. Am. Chem. Soc.,2017, 139, 8698 |
[15] | Wu G., Chen W., Zheng X., He D., Luo Y., Wang X., Yang J., Wu Y., Yan W., Zhuang Z., Hong X., Li Y., Nano Energy,2017, 38, 167 |
[16] | Ling T., Wang J. J., Zhang H., Song S. T., Zhou Y. Z., Zhao J., Du X. W., Adv. Mater.,2015, 27, 5396 |
[17] | Ma Y., Li B., Yang S., Mater. Chem. Front.,2018, 2, 456 |
[18] | Cheng H., Yang N., Lu Q., Zhang Z., Zhang H., Adv. Mater.,2018, 30, e1707189 |
[19] | Zeb Gul Sial M. A., Ud Din M. A., Wang X., Chem. Soc. Rev.,2018, 47, 6175 |
[20] | Zhang B., Zheng X., Voznyy O., Comin R., Bajdich M., Garcia-Melchor M., Han L., Xu J., Liu M., Zheng L., Arquer F. P. G., Dinh C. T., Fan F., Yuan M., Yassitepe E., Chen N., Regier T., Liu P., Li Y., Luna P. D., Janmohamed A., Xin H. L., Yang H., Vojvodic A., Sargent E. H., Science,2016, 352, 333 |
[21] | Jiao Y., Zheng Y., Jaroniec M., Qiao S. Z., Chem. Soc. Rev.,2015, 44, 2060 |
[22] | Debe M. K., Nature,2012, 486, 43 |
[23] | Chao T., Hu Y., Hong X., Li Y., ChemElectroChem,2019, 6, 289 |
[24] | Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I., Norskov J. K., Jaramillo T. F., Science,2017, 355, eaad4998 |
[25] | Shao M., Chang Q., Dodelet J. P., Chenitz R., Chem. Rev.,2016, 116, 3594 |
[26] | Strmcnik D., Uchimura M., Wang C., Subbaraman R., Danilovic N., van der Vliet D., Paulikas A. P., Stamenkovic V. R., Markovic N. M., Nat. Chem.,2013, 5, 300 |
[27] | Suen N. T., Hung S. F., Quan Q., Zhang N., Xu Y. J., Chen H. M., Chem. Soc. Rev.,2017, 46, 337 |
[28] | Zhu D. D., Liu J. L., Qiao S. Z., Adv. Mater.,2016, 28, 3423 |
[29] | Kulkarni A., Siahrostami S., Patel A., Norskov J. K., Chem. Rev.,2018, 118, 2302 |
[30] | McCrory C. C., Jung S., Ferrer I. M., Chatman S. M., Peters J. C., Jaramillo T. F., J. Am. Chem. Soc.,2015, 137, 4347 |
[31] | Liu H. L., Nosheen F., Wang X., Chem. Soc. Rev.,2015, 44, 3056 |
[32] | Liu S., Tian N., Xie A. Y., Du J. H., Xiao J., Liu L., Sun H. Y., Cheng Z. Y., Zhou Z. Y., Sun S. G., J. Am. Chem. Soc.,2016, 138, 5753 |
[33] | Hong X., Wang D., Cai S., Rong H., Li Y., J. Am. Chem. Soc.,2012, 134, 18165 |
[34] | Ge J., Li Z., Hong X., Li Y., Chem. Eur. J.,2019, 25, 5113 |
[35] | Zou X., Zhang Y., Chem. Soc. Rev.,2015, 44, 5148 |
[36] | Hunter B. M., Gray H. B., Muller A. M., Chem. Rev.,2016, 116, 14120 |
[37] | Yang M. Q., Wang J., Wu H., Ho G. W., Small,2018, 14, e1703323 |
[38] | Zhu C., Du D., Eychmuller A., Lin Y., Chem. Rev.,2015, 115, 8896 |
[39] | Ren X., Lv Q., Liu L., Liu B., Wang Y., Liu A., Wu G., Sust. Energy Fuels,2020, 4, 15 |
[40] | Wang Y., Mao J., Meng X., Yu L., Deng D., Bao X., Chem. Rev.,2019, 119, 1806 |
[41] | An B., Li M., Wang J., Li C., Front. Chem. Sci. Eng.,2016, 10, 360 |
[42] | Feng Y., Huang B., Yang C., Shao Q., Huang X., Adv. Funct. Mater.,2019, 29, 1904429 |
[43] | Zhang H., ACS Nano,2015, 9, 9451 |
[44] | Chia X., Pumera M., Nat. Catal.,2018, 1, 909 |
[45] | Dou Y., Zhang L., Xu X., Sun Z., Liao T., Dou S. X., Chem. Soc. Rev.,2017, 46, 7338 |
[46] | Xia Y., Xiong Y., Lim B., Skrabalak S. E., Angew. Chem. Int. Ed., 2009, 48, 60 |
[47] | Luo M., Sun Y., Wang L., Guo S., Adv. Energy Mater.,2017, 7, 1602073 |
[48] | Liz-Marzan L. M., Grzelczak M., Science,2017, 356, 1120 |
[49] | Xie S., Liu X. Y., Xia Y., Nano Res.,2015, 8, 82 |
[50] | Chen Y., Fan Z., Zhang Z., Niu W., Li C., Yang N., Chen B., Zhang H., Chem. Rev.,2018, 118, 6409 |
[51] | Fan Z., Zhang H., Accounts Chem. Res.,2016, 49, 2841 |
[52] | Yi M., Shen Z., J. Mater. Chem. A,2015, 3, 11700 |
[53] | Lizmarzan L. M., Grzelczak M., Science,2017, 356, 1120 |
[54] | Wang F., Wang Z., Shifa T. A., Wen Y., Wang F., Zhan X., Wang Q., Xu K., Huang Y., Yin L., Jiang C., He J., Adv. Funct. Mater.,2017, 27, 1603254 |
[55] | Lee J., Yang J., Kwon S. G., Hyeon T., Nat. Rev. Mater.,2016, 1, 16034 |
[56] | Gilroy K. D., Ruditskiy A., Peng H. C., Qin D., Xia Y., Chem. Rev.,2016, 116, 10414 |
[57] | O'Brien M. N., Jones M. R., Kohlstedt K. L., Schatz G. C., Mirkin C. A., Nano Lett.,2015, 15, 1012 |
[58] | Funatsu A., Tateishi H., Hatakeyama K., Fukunaga Y., Taniguchi T., Koinuma M., Matsuura H., Matsumoto Y., Chem. Commun.,2014, 50, 8503 |
[59] | Xu D., Lv H., Jin H., Liu Y., Ma Y., Han M., Bao J., Liu B., J. Phys. Chem. Lett.,2019, 10, 663 |
[60] | Xie B., Zhang Y., Du N., Li H., Hou W., Zhang R., Chem. Commun.,2016, 52, 13815 |
[61] | Liu H., Zhong P., Liu K., Han L., Zheng H., Yin Y., Gao C., Chem. Sci.,2018, 9, 398 |
[62] | Chhetri M., Rana M., Loukya B., Patil P. K., Datta R., Gautam U. K., Adv. Mater.,2015, 27, 4430 |
[63] | Huang X., Zeng Z., Bao S., Wang M., Qi X., Fan Z., Zhang H., Nat. Commun.,2013, 4, 1444 |
[64] | Dai L., Zhao Y., Qin Q., Zhao X., Xu C., Zheng N., ChemNanoMat,2016, 2, 776 |
[65] | Qin Y., Luo M., Sun Y., Li C., Huang B., Yang Y., Li Y., Wang L., Guo S., ACS Catal.,2018, 8, 5581 |
[66] | Bu L., Zhang N., Guo S., Zhang X., Li J., Yao J., Wu T., Lu G., Ma J., Su D., Huang X., Science,2016, 354, 1410 |
[67] | Liao H., Zhu J., Hou Y., Nanoscale,2014, 6, 1049 |
[68] | Saleem F., Zhang Z., Xu B., Xu X., He P., Wang X., J. Am. Chem. Soc.,2013, 135, 18304 |
[69] | Saleem F., Zhang Z., Cui X., Gong Y., Chen B., Lai Z., Yun Q., Gu L., Zhang H., J. Am. Chem. Soc.,2019, 141, 14496 |
[70] | Zhang H., Jin M., Xiong Y., Lim B., Xia Y., Accounts Chem. Res.,2013, 46, 1783 |
[71] | Lim B., Jiang M., Tao J., Camargo P. H. C., Zhu Y., Xia Y., Adv. Funct. Mater.,2009, 19, 189 |
[72] | Luo M., Zhao Z., Zhang Y., Sun Y., Xing Y., Lv F., Yang Y., Zhang X., Hwang S., Qin Y., Ma J. Y., Lin F., Su D., Lu G., Guo S., Nature,2019, 574, 81 |
[73] | Surnev S., Sock M., Ramsey M. G., Netzer F. P., Wiklund M., Borg M., Andersen J. N., Surf. Sci.,2000, 470, 171 |
[74] | Siril P. F., Ramos L., Beaunier P., Archirel P., Etcheberry A., Remita H., Chem. Mater.,2009, 21, 5170 |
[75] | Huang X., Tang S., Mu X., Dai Y., Chen G., Zhou Z., Ruan F., Yang Z., Zheng N., Nat. Nanotechnol.,2010, 6, 28 |
[76] | Li H., Chen G., Yang H., Wang X., Liang J., Liu P., Chen M., Zheng N., Angew. Chem. Int. Ed.,2013, 52, 8368 |
[77] | Yin X., Liu X., Pan Y. T., Walsh K. A., Yang H., Nano Lett.,2014, 14, 7188 |
[78] | Hong J. W., Kim Y., Wi D. H., Lee S., Lee S. U., Lee Y. W., Choi S. I., Han S. W., Angew. Chem. Int. Ed.,2016, 55, 2753 |
[79] | Puntes V. F., Zanchet D., Erdonmez C. K., Alivisatos A. P., J. Am. Chem. Soc.,2002, 124, 12874 |
[80] | Yang N., Zhang Z., Chen B., Huang Y., Chen J., Lai Z., Chen Y., Sindoro M., Wang A. L., Cheng H., Fan Z., Liu X., Li B., Zong Y., Gu L., Zhang H., Adv. Mater.,2017, 29, 1700769.1 |
[81] | Wang Y., Peng H. C., Liu J., Huang C. Z., Xia Y., Nano Lett.,2015, 15, 1445 |
[82] | Huang W., Kang X., Xu C., Zhou J., Deng J., Li Y., Cheng S., Adv. Mater.,2018, 30, 1706962.1 |
[83] | Qiu X., Zhang H., Wu P., Zhang F., Wei S., Sun D., Xu L., Tang Y., Adv. Funct. Mater., 2017,27, 1603852.1 |
[84] | Liu J., Ma Q., Huang Z., Liu G., Zhang H., Adv. Mater.,2019, 31, e1800696 |
[85] | Jiang Y., Yan Y., Chen W., Khan Y., Wu J., Zhang H., Yang D., Chem. Commun.,2016, 52, 14204 |
[86] | He C., Tao J., Shen P. K., ACS Catal.,2018, 8, 910 |
[87] | Hu Y., Luo X., Wu G., Chao T., Li Z., Qu Y., Li H., Wu Y., Jiang B., Hong X., ACS Appl. Mater. Interfaces,2019, 11, 42298 |
[88] | Ge J., He D., Chen W., Ju H., Zhang H., Chao T., Wang X., You R., Lin Y., Wang Y., Zhu J., Li H., Xiao B., Huang W., Wu Y., Hong X., Li Y., J. Am. Chem. Soc.,2016, 138, 13850 |
[89] | Ge J., Wei P., Wu G., Liu Y., Yuan T., Li Z., Qu Y., Wu Y., Li H., Zhuang Z., Hong X., Li Y., Angew. Chem. Int. Ed.,2018, 57, 3435 |
[90] | Li N., Zhao P., Astruc D., Angew. Chem. Int. Ed., 2014, 53, 1756 |
[91] | Fan Z., Huang X., Chen Y., Huang W., Zhang H., Nat. Protoc.,2017, 12, 2367 |
[92] | Chen C. C., Hsu C. H., Kuo P. L., Langmuir,2007, 23, 6801 |
[93] | Jang M. H., Kim J. K., Tak H., Yoo H., J. Mater. Chem.,2011, 21, 17606 |
[94] | Hong X., Tan C. L., Liu J. Q., Yang J., Wu X. J., Fan Z. X., Luo Z. M., Chen J. Z., Zhang X., Chen B., Zhang H., J. Am. Chem. Soc.,2015, 137, 1444 |
[95] | Tsuji M., Gomi S., Maeda Y., Matsunaga M., Hikino S., Uto K., Tsuji T., Kawazumi H., Langmuir,2012, 28, 8845 |
[96] | Lohse S. E., Burrows N. D., Scarabelli L., Liz-Marzán L. M., Murphy C. J., Chem. Mat.,2013, 26, 34 |
[97] | Hwang S. Y., Zhang M., Zhang C., Ma B., Zheng J., Peng Z., Chem. Commun.,2014, 50, 14013 |
[98] | Chen M., Wu B., Yang J., Zheng N., Adv. Mater.,2012, 24, 862 |
[99] | Long R., Zhou S., Wiley B. J., Xiong Y., Chem. Soc. Rev.,2014, 43, 6288 |
[100] | Chen L., Ji F., Xu Y., He L., Mi Y., Bao F., Sun B., Zhang X., Zhang Q., Nano Lett.,2014, 14, 7201 |
[101] | Huang X., Qi X., Huang Y., Li S., Xue C., Gan C. L., Boey F., Zhang H., ACS Nano,2010, 4, 6196 |
[102] | Shaik F., Zhang W., Niu W., J. Phys. Chem. C,2017, 121, 9572 |
[103] | Brus L., Nat. Mater.,2016, 15, 824 |
[104] | DuChene J. S., Niu W., Abendroth J. M., Sun Q., Zhao W., Huo F., Wei W. D., Chem. Mater.,2012, 25, 1392 |
[105] | Zhai Y., DuChene J. S., Wang Y. C., Qiu J., Johnston-Peck A. C., You B., Guo W., DiCiaccio B., Qian K., Zhao E. W., Ooi F., Hu D., Su D., Stach E. A., Zhu Z., Wei W. D., Nat. Mater.,2016, 15, 889 |
[106] | Niu J., Wang D., Qin H., Xiong X., Tan P., Li Y., Liu R., Lu X., Wu J., Zhang T., Ni W., Jin J., Nat. Commun.,2014, 5, 3313 |
[107] | Zhou M., Lin M., Chen L., Wang Y., Guo X., Peng L., Guo X., Ding W., Chem. Commun.,2015, 51, 5116 |
[108] | Wang L., Zhu Y., Wang J. Q., Liu F., Huang J., Meng X., Basset J. M., Han Y., Xiao F. S., Nat. Commun.,2015, 6, 6957 |
[109] | Huang X., Li S., Huang Y., Wu S., Zhou X., Li S., Gan C. L., Boey F., Mirkin C. A., Zhang H., Nat. Commun.,2011, 2, 292 |
[110] | Fan Z., Bosman M., Huang X., Huang D., Yu Y., Ong K. P., Akimov Y. A., Wu L., Li B., Wu J., Huang Y., Liu Q., Png C. E., Gan C. L., Yang P., Zhang H., Nat. Commun.,2015, 6, 7684 |
[111] | Fan Z., Zhu Y., Huang X., Han Y., Zhang H., Angew. Chem. Int. Ed.,2015, 54, 5672 |
[112] | Fan Z., Luo Z., Huang X., Li B., Chen Y., Wang J., Hu Y., Zhang H., J. Am. Chem. Soc.,2016, 138, 1414 |
[113] | Fan Z., Luo Z., Chen Y., Wang J., Li B., Zong Y., Zhang H., Small,2016, 12, 3908 |
[114] | Millstone J. E., Hurst S. J., Metraux G. S., Cutler J. I., Mirkin C. A., Small,2009, 5, 646 |
[115] | Jin R., Cao Y., Mirkin C. A., Kelly K. L., Schatz G. C., Zheng J. G., Science,2001, 294, 1901 |
[116] | Jin R., Cao Y. C., Hao E., Metraux G. S., Schatz G. C., Mirkin C. A., Nature,2003, 425, 487 |
[117] | Xue C., Millstone J. E., Li S., Mirkin C. A., Angew. Chem. Int. Ed.,2007, 46, 8436 |
[118] | Kim M. H., Kwak S. K., Im S. H., Lee J. B., Choi K. Y., Byun D. J., J. Mater. Chem. C,2014, 2, 6165 |
[119] | Zhang Q., Li N., Goebl J., Lu Z., Yin Y., J. Am. Chem. Soc.,2011, 133, 18931 |
[120] | Zeng J., Xia X., Rycenga M., Henneghan P., Li Q., Xia Y., Angew. Chem. Int. Ed.,2011, 50, 244 |
[121] | Liu H., Tang H., Fang M., Si W., Zhang Q., Huang Z., Gu L., Pan W., Yao J., Nan C., Wu H., Adv. Mater.,2016, 28, 8170 |
[122] | Chiou W. H., Wang Y. W., Kao C. L., Chen P. C., Wu C. C., Organometallics,2014, 33, 4240 |
[123] | Zhao L., Xu C., Su H., Liang J., Lin S., Gu L., Wang X., Chen M., Zheng N., Adv. Sci.,2015, 2, 1500100 |
[124] | Hou C., Zhu J., Liu C., Wang X., Kuang Q., Zheng L., CrystEngComm,2013, 15, 6127 |
[125] | Duan H., Yan N., Yu R., Chang C. R., Zhou G., Hu H. S., Rong H., Niu Z., Mao J., Asakura H., Tanaka T., Dyson P. J., Li J., Li Y., Nat. Commun.,2014, 5, 3093 |
[126] | Pi Y., Zhang N., Guo S., Guo J., Huang X., Nano Lett.,2016, 16, 4424 |
[127] | Jiang B., Guo Y., Kim J., Whitten A. E., Wood K., Kani K., Rowan A. E., Henzie J., Yamauchi Y., J. Am. Chem. Soc.,2018, 140, 12434 |
[128] | Yin A. X., Liu W. C., Ke J., Zhu W., Gu J., Zhang Y. W., Yan C. H., J. Am. Chem. Soc.,2012, 134, 20479 |
[129] | Kong X., Xu K., Zhang C., Dai J., Norooz Oliaee S., Li L., Zeng X., Wu C., Peng Z., ACS Catal.,2016, 6, 1487 |
[130] | Yao Q., Huang B., Zhang N., Sun M., Shao Q., Huang X., Angew. Chem. Int. Ed.,2019, 58, 13983 |
[131] | Mao J., He C. T., Pei J., Chen W., He D., He Y., Zhuang Z., Chen C., Peng Q., Wang D., Li Y., Nat. Commun.,2018, 9, 4958 |
[132] | Wu G., Zheng X., Cui P., Jiang H., Wang X., Qu Y., Chen W., Lin Y., Li H., Han X., Hu Y., Liu P., Zhang Q., Ge J., Yao Y., Sun R., Wu Y., Gu L., Hong X., Li Y., Nat. Commun.,2019, 10, 4855 |
[133] | Chhowalla M., Shin H. S., Eda G., Li L. J., Loh K. P., Zhang H., Nat. Chem.,2013, 5, 263 |
[134] | Wang Q., O'Hare D., Chem. Rev.,2012, 112, 4124 |
[135] | Naguib M., Mochalin V. N., Barsoum M. W., Gogotsi Y., Adv. Mater.,2014, 26, 992 |
[136] | Wang G., Tao J., Zhang Y., Wang S., Yan X., Liu C., Hu F., He Z., Zuo Z., Yang X., ACS Appl. Mater. Interfaces,2018, 10, 25409 |
[137] | Lu X., Xie S., Yang H., Tong Y., Ji H., Chem. Soc. Rev.,2014, 43, 7581 |
[138] | Luo Y., Luo X., Wu G., Li Z., Wang G., Jiang B., Hu Y., Chao T., Ju H., Zhu J., Zhuang Z., Wu Y., Hong X., Li Y., ACS Appl. Mater. Interfaces,2018, 10, 34147 |
[139] | Higgins D., Zamani P., Yu A., Chen Z., Energy Environ. Sci.,2016, 9, 357 |
[140] | Yin H., Zhao S., Zhao K., Muqsit A., Tang H., Chang L., Zhao H., Gao Y., Tang Z., Nat. Commun.,2015, 6, 6430 |
[141] | Yao T., An X., Han H., Chen J. Q., Li C., Adv. Energy Mater.,2018, 8, 1800210 |
[142] | Yao Y., Gu X. K., He D., Li Z., Liu W., Xu Q., Yao T., Lin Y., Wang H. J., Zhao C., Wang X., Yin P., Li H., Hong X., Wei S., Li W. X., Li Y., Wu Y., J. Am. Chem. Soc.,2019, 141, 19964 |
[143] | Chao T., Luo X., Chen W., Jiang B., Ge J., Lin Y., Wu G., Wang X., Hu Y., Zhuang Z., Wu Y., Hong X., Li Y., Angew. Chem. Int. Ed.,2017, 56, 16047 |
[144] | Man I. C., Su H. Y., Calle-Vallejo F., Hansen H. A., Martínez J. I., Inoglu N. G., Kitchin J., Jaramillo T. F., Nørskov J. K., Rossmeisl J., ChemCatChem,2011, 3, 1159 |
[145] | Chu S., Cui Y., Liu N., Nat. Mater.,2016, 16, 16 |
[146] | Cano Z. P., Banham D., Ye S., Hintennach A., Lu J., Fowler M., Chen Z., Nat. Energy,2018, 3, 279 |
[147] | Winther-Jensen B., Winther-Jensen O., Forsyth M., Macfarlane D. R., Science,2008, 321, 671 |
[148] | Buitenwerf R., Rose L., Higgins S. I., Nat. Clim. Change.,2015, 5, 364 |
[149] | Rogers C., Perkins W. S., Veber G., Williams T. E., Cloke R. R., Fischer F. R., J. Am. Chem. Soc.,2017, 139, 4052 |
[150] | Liu S., Tao H., Zeng L., Liu Q., Xu Z., Liu Q., Luo J. L., J. Am. Chem. Soc.,2017, 139, 2160 |
[1] | MA Chunrong, SONG Bingyi, MA Zhentao, WANG Xiaoqian, TIAN Lin, ZHANG Haoran, CHEN Cai, ZHENG Xusheng, YANG Li-ming, WU Yuen. A Supported Palladium on Gallium-based Liquid Metal Catalyst for Enhanced Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1219-1225. |
[2] | ZHENG Ruonan, ZHAI Zihui, QIU Chenxi, GAO Rui, LV Yang, SONG Yujiang. Highly Active Electrocatalyst Derived from ZIF-8 Decorated with Iron(III) and Cobalt(III) Porphyrin Toward Efficient Oxygen Reduction in Both Alkaline and Acidic Media [J]. Chemical Research in Chinese Universities, 2022, 38(4): 961-967. |
[3] | HAO Zhimin, LIU Dapeng, GE Huaiyun, ZUO Xintao, FENG Xilan, SHAO Mingzhe, YU Haohan, YUAN Guobao, and ZHANG Yu. Preparation of Quaternary FeCoMoCu Metal Oxides for Oxygen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(3): 823-828. |
[4] | FU Xinliang, ZHU Aonan, CHEN Xiaojie, ZHANG Shifu, WANG Mei, YUAN Mingjian. Stabilization of Cu/Ni Alloy Nanoparticles with Graphdiyne Enabling Efficient CO2 Reduction [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1328-1333. |
[5] | WEN Jinguli, LI Yuwen, GAO Junkuo. Two-dimensional Metal-Organic Frameworks and Derivatives for Electrocatalysis [J]. Chemical Research in Chinese Universities, 2020, 36(4): 662-679. |
[6] | FANG Wensheng, HUANG Lei, ZAMAN Shahid, WANG Zhitong, HAN Youjia, XIA Bao Yu. Recent Progress on Two-dimensional Electrocatalysis [J]. Chemical Research in Chinese Universities, 2020, 36(4): 611-621. |
[7] | LEI Jia, ZENG Mengqi, FU Lei. Two-dimensional Metal-Organic Frameworks as Electrocatalysts for Oxygen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2020, 36(4): 504-510. |
[8] | DONG Wenfei, CHEN Xiaoyu, PENG Juan, LIU Wanyi, JIN Xiaoyong, NI Gang, LIU Zheng. Recent Progress on 2D Transition Metal Compounds-based Electrocatalysts for Efficient Nitrogen Reduction [J]. Chemical Research in Chinese Universities, 2020, 36(4): 648-661. |
[9] | SHI Yi, DAI Wenrui, WANG Meng, XING Yongfang, XIA Xinghua, CHEN Wei. Bioinspired Construction of Ruthenium-decorated Nitrogen-doped Graphene Aerogel as an Efficient Electrocatalyst for Hydrogen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2020, 36(4): 709-714. |
[10] | YANG Chan, CHAI Jiaxin, WANG Zhe, XING Yonglei, PENG Juan, YAN Qingyu. Recent Progress on Bismuth-based Nanomaterials for Electrocatalytic Carbon Dioxide Reduction [J]. Chemical Research in Chinese Universities, 2020, 36(3): 410-419. |
[11] | LU Xue, LIU Guocheng, WANG Xiang, LIN Hongyan, WANG Xiuli. Carboxylate-induced Various Structures of Ni(Ⅱ) Complexes with Fluorescence Sensing and Bifunctional Electrochemical Properties [J]. Chemical Research in Chinese Universities, 2019, 35(4): 549-555. |
[12] | ZHANG Xuena, ZHONG Xinwen, YANG Zhe, SONG Jiapeng, LU Haiyan. Carbon-covered Tungsten Carbide Nanoparticles: Solid-state Synthesis and Application as Stable Electrocatalysts for the Hydrogen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2016, 32(6): 1016-1018. |
[13] | ZHAO Dongjiang, MA Songyan. Oxygen Electroreduction on CoSe2 Nanoparticles Prepared via Hydrothermal Method in Acidic Medium [J]. Chemical Research in Chinese Universities, 2015, 31(3): 447-451. |
[14] | LI Shuo-qi, HU Jing-bo. Immobilization of Hemoglobin on Cobalt Nanoparticles-modified Indium Tin Oxide Electrode: Direct Electrochemistry and Electrocatalytic Activity [J]. Chemical Research in Chinese Universities, 2013, 29(3): 563-567. |
[15] | TENG Hong, LIU Yang and YOU Tian-yan*. Facile Synthesis of Gold Nanoparticle-loaded Carbon Nanofiber Composites and Their Electrocatalytic Activity Towards Dopamine, Ascorbic Acid and Uric Acid [J]. Chemical Research in Chinese Universities, 2011, 27(3): 496-499. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||