Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5): 1172-1184.doi: 10.1007/s40242-022-2245-0
• Reviews • Previous Articles Next Articles
WANG Guowei, KE Xiaoxing, SUI Manling
Received:
2022-07-20
Online:
2022-10-01
Published:
2022-10-08
Contact:
KE Xiaoxing, SUI Manling
E-mail:kexiaoxing@bjut.edu.cn;mlsui@bjut.edu.cn
Supported by:
WANG Guowei, KE Xiaoxing, SUI Manling. Advanced TEM Characterization for Single-atom Catalysts: from Ex-situ Towards In-situ[J]. Chemical Research in Chinese Universities, 2022, 38(5): 1172-1184.
[1] Debe M. K., Nature, 2012, 486, 43 [2] Wu H. B., Lou X. W., Sci. Adv., 2017, 3, eaap9252 [3] Zhang J., Sun B., Zhao Y., Kretschmer K., Wang G., Angew. Chem. Int. Ed., 2017,56, 8505 [4] Yang Y., Yang Y., Pei Z., Wu K.-H., Tan C., Wang H., Wei L., Mahmood A., Yan C., Dong J., Zhao S., Chen Y., Matter, 2020, 3, 1442 [5] Tian H., Tian H., Wang S., Chen S., Zhang F., Song L., Liu H., Liu J., Wang G., Nat. Commun., 2020, 11, 5025 [6] Choi J., Suryanto B. H. R., Wang D., Du H. L., Hodgetts R. Y., Ferrero Vallana F. M., MacFarlane D. R., Simonov A. N., Nat. Commun., 2020, 11, 5546 [7] Zhang Y., Guo S.-X., Zhang X., Bond A. M., Zhang J., Nano Today, 2020, 31, 100835 [8] Lacey S. D., Dong Q., Huang Z., Luo J., Xie H., Lin Z., Kirsch D. J., Vattipalli V., Povinelli C., Fan W., Shahbazian-Yassar R., Wang D., Hu L., Nano Lett., 2019,19, 5149 [9] Zhang L., Liu H., Liu S., Norouzi Banis M., Song Z., Li J., Yang L., Markiewicz M., Zhao Y., Li R., Zheng M., Ye S., Zhao Z.-J., Botton G. A., Sun X., ACS Catal., 2019, 9, 9350 [10] Zhao C. X., Li B. Q., Liu J. N., Zhang Q., Angew. Chem. Int. Ed., 2021, 60, 4448 [11] Wang Y., Su H., He Y., Li L., Zhu S., Shen H., Xie P., Fu X., Zhou G., Feng C., Zhao D., Xiao F., Zhu X., Zeng Y., Shao M., Chen S., Wu G., Zeng J., Wang C., Chem. Rev., 2020, 120, 12217 [12] Luo Z., Li J., Li Y., Wu D., Zhang L., Ren X., He C., Zhang Q., Gu M., Sun X., Adv. Energy Mater., 2022, 12, 2103823 [13] Gao C., Low J., Long R., Kong T., Zhu J., Xiong Y., Chem. Rev., 2020, 120, 12175 [14] Su L., Wang P., Wang J., Zhang D., Wang H., Li Y., Zhan S., Gong J., Adv. Funct. Mater., 2021, 31, 2104343 [15] Wang K., Jiang L., Xin T., Li Y., Wu X., Zhang G., Chem. Eng. J., 2022, 42, 132229 [16] Zhou P., Chen H., Chao Y., Zhang Q., Zhang W., Lv F., Gu L., Zhao Q., Wang N., Wang J., Guo S., Nat. Commun., 2021,12, 4412 [17] Xia Y., Sayed M., Zhang L., Cheng B., Yu J., Chem. Catal., 2021, 1, 1173 [18] Xia B., Zhang Y., Ran J., Jaroniec M., Qiao S. Z., ACS Cent. Sci., 2021, 7, 39 [19] Li C., Li J., Huang Y., Liu J., Ma M., Liu K., Zhao C., Wang Z., Qu S., Zhang L., Han H., Deng W., Wang Z., J. Semicond., 2022, 43, 021701 [20] Lian Z., Yang M., Jan F., Li B., J. Phys. Chem. Lett., 2021, 12, 7053 [21] Cui T., Wang Y. P., Ye T., Wu J., Chen Z., Li J., Lei Y., Wang D., Li Y., Angew. Chem. Int. Ed., 2022, 61, e202115219 [22] Zhu H., Sha M., Zhao H., Nie Y., Sun X., Lei Y., J. Semicond., 2020, 41, 092701 [23] Zhang Q., Guan J., Adv. Funct. Mater.,2020, 30, 2000768 [24] Xie X., Peng L., Yang H., Waterhouse G. I. N., Shang L., Zhang T., Adv. Mater., 2021, 33, e2101038 [25] Kaiser S. K., Chen Z., Faust Akl D., Mitchell S., Perez-Ramirez J., Chem. Rev.,2020, 120, 11703 [26] Chen C. H., Wu D., Li Z., Zhang R., Kuai C. G., Zhao X. R., Dong C. K., Qiao S. Z., Liu H., Du X. W., Adv. Energy Mater., 2019, 9, 1803913 [27] Jiang K., Liu B., Luo M., Ning S., Peng M., Zhao Y., Lu Y. R., Chan T. S., de Groot F. M. F., Tan Y., Nat. Commun., 2019, 10, 1743 [28] Wang J., Yang H., Li F., Li L.G., Wu J. B., Liu S. H, Cheng T., Xu Y., Shao Q., Huang X. Q., Sci. Adv., 2022, 8, eabl9271 [29] Babu D. D., Huang Y., Anandhababu G., Wang X., Si R., Wu M., Li Q., Wang Y., Yao J., J. Mater. Chem. A, 2019,7, 8376 [30] Yin J., Jin J., Lu M., Huang B., Zhang H., Peng Y., Xi P., Yan C. H., J. Am. Chem. Soc., 2020, 142, 18378 [31] Yang G., Zhu J., Yuan P., Hu Y., Qu G., Lu B. A., Xue X., Yin H., Cheng W., Cheng J., Xu W., Li J., Hu J., Mu S., Zhang J. N., Nat. Commun., 2021, 12, 1734 [32] Kulkarni A., Siahrostami S., Patel A., Norskov J. K., Chem. Rev., 2018, 118, 2302 [33] Lin Z., Huang H., Cheng L., Hu W., Xu P., Yang Y., Li J., Gao F., Yang K., Liu S., Jiang P., Yan W., Chen S., Wang C., Tong H., Huang M., Zheng W., Wang H., Chen Q., Adv. Mater., 2021,33, e2107103 [34] Chen S., Luo T., Li X., Chen K., Fu J., Liu K., Cai C., Wang Q., Li H., Chen Y., Ma C., Zhu L., Lu Y. R., Chan T. S., Zhu M., Cortes E., Liu M., J. Am. Chem. Soc., 2022, 144, 14505 [35] Teng Z., Zhang Q., Yang H., Kato K., Yang W., Lu Y.-R., Liu S., Wang C., Yamakata A., Su C., Liu B., Ohno T., Nat. Catal.,2021, 4, 374 [36] Zhang Q., Tan X., Bedford N. M., Han Z., Thomsen L., Smith S., Amal R., Lu X., Nat. Commun., 2020, 11, 4181 [37] Wang Z., Ke X., Zhou K., Xu X., Jin Y., Wang H., Sui M., J. Mater. Chem. A, 2021,9, 18515 [38] Wang M., Kong L., Lu X., Lawrence Wu C.-M., J. Mater. Chem. A, 2022, 10, 9048 [39] Ren W., Tan X., Yang W., Jia C., Xu S., Wang K., Smith S. C., Zhao C., Angew.Chem.Int. Ed., 2019, 58, 6972 [40] Zhao C., Dai X., Yao T., Chen W., Wang X., Wang J., Yang J., Wei S., Wu Y., Li Y., J. Am. Chem. Soc., 2017, 139, 8078 [41] Li Y., Li J., Huang J., Chen J., Kong Y., Yang B., Li Z., Lei L., Chai G., Wen Z., Dai L., Hou Y., Angew. Chem. Int. Ed., 2021, 60, 9078 [42] Xue Z., Zhang X., Qin J., Liu R., Nano Energy 2021, 80, 105527 [43] Geng J., Zhang S., Xu H., Wang G., Zhang H., Chem. Commun., 2021, 57, 5410 [44] Chen Y., Wang P., Hao H., Hong J., Li H., Ji S., Li A., Gao R., Dong J., Han X., Liang M., Wang D., Li Y., J. Am. Chem. Soc., 2021, 143, 18643 [45] Li Z., Chen Y., Ji S., Tang Y., Chen W., Li A., Zhao J., Xiong Y., Wu Y., Gong Y., Yao T., Liu W., Zheng L., Dong J., Wang Y., Zhuang Z., Xing W., He C. T., Peng C., Cheong W. C., Li Q., Zhang M., Chen Z., Fu N., Gao X., Zhu W., Wan J., Zhang J., Gu L., Wei S., Hu P., Luo J., Li J., Chen C., Peng Q., Duan X., Huang Y., Chen X. M., Wang D., Li Y., Nat. Chem., 2020, 12, 764 [46] Qi H., Yang J., Liu F., Zhang L., Yang J., Liu X., Li L., Su Y., Liu Y., Hao R., Wang A., Zhang T., Nat. Commun., 2021, 12, 3295 [47] Tian S., Fu Q., Chen W., Feng Q., Chen Z., Zhang J., Cheong W. C., Yu R., Gu L., Dong J., Luo J., Chen C., Peng Q., Draxl C., Wang D., Li Y., Nat. Commun.,2018, 9, 2353 [48] Wang J., You R., Zhao C., Zhang W., Liu W., Fu X.-P., Li Y., Zhou F., Zheng X., Xu Q., Yao T., Jia C.-J., Wang Y.-G., Huang W., Wu Y., ACS Catal., 2020, 10, 2754 [49] Xiong Y., Dong J., Huang Z. Q., Xin P., Chen W., Wang Y., Li Z., Jin Z., Xing W., Zhuang Z., Ye J., Wei X., Cao R., Gu L., Sun S., Zhuang L., Chen X., Yang H., Chen C., Peng Q., Chang C. R., Wang D., Li Y., Nat. Nanotechnol., 2020,15, 390 [50] Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Li J., Zhang T., Nat. Chem., 2011, 3, 634 [51] Han L., Cheng H., Liu W., Li H., Ou P., Lin R., Wang H. T., Pao C. W., Head A. R., Wang C. H., Tong X., Sun C. J., Pong W. F., Luo J., Zheng J. C., Xin H. L., Nat. Mater., 2022, 21, 681 [52] He X., He Q., Deng Y., Peng M., Chen H., Zhang Y., Yao S., Zhang M., Xiao D., Ma D., Ge B., Ji H., Nat. Commun., 2019,10, 3663 [53] Liang S., Zhu C., Zhang N., Zhang S., Qiao B., Liu H., Liu X., Liu Z., Song X., Zhang H., Hao C., Shi Y., Adv. Mater., 2020, 32, e2000478 [54] Liu X., Luo Y., Ling C., Shi Y., Zhan G., Li H., Gu H., Wei K., Guo F., Ai Z., Zhang L., Appl. Catal. B: Environ., 2022,301, 120766 [55] Peng X., Mi Y., Bao H., Liu Y., Qi D., Qiu Y., Zhuo L., Zhao S., Sun J., Tang X., Luo J., Liu X., Nano Energy, 2020,78, 105321 [56] Wang Q., Liu K., Fu J., Cai C., Li H., Long Y., Chen S., Liu B., Li H., Li W., Qiu X., Zhang N., Hu J., Pan H., Liu M., Angew. Chem. Int. Ed., 2021, 60, 25241 [57] Yang Q., Peng H., Zhang Q., Qian X., Chen X., Tang X., Dai S., Zhao J., Jiang K., Yang Q., Sun J., Zhang L., Zhang N., Gao H., Lu Z., Chen L., Adv. Mater., 2021, 33, e2103186 [58] Zheng T., Liu C., Guo C., Zhang M., Li X., Jiang Q., Xue W., Li H., Li A., Pao C. W., Xiao J., Xia C., Zeng J., Nat. Nanotechnol., 2021, 16, 1386 [59] Zhou P., Chao Y., Lv F., Wang K., Zhang W., Zhou J., Chen H., Wang L., Li Y., Zhang Q., Gu L., Guo S., ACS Catal., 2020, 10, 9109 [60] Kasamatsu Y., Toyomura K., Haba H., Yokokita T., Shigekawa Y., Kino A., Yasuda Y., Komori Y., Kanaya J., Huang M., Murakami M., Kikunaga H., Watanabe E., Yoshimura T., Morita K., Mitsugashira T., Takamiya K., Ohtsuki T., Shinohara A., Nat. Chem., 2021, 13, 226 [61] Wang S., Sun M., Zheng L., Zhou S., Chem Catal., 2021, 1, 1322 [62] Zhang Y., Qi L., Lund A., Lu P., Bell A. T., J. Am. Chem. Soc., 2021, 143, 8352 [63] Asakura H. N. K., Ichikuni N., Iwasawa Y., Appl. Catal. A: Gen., 1999, 188, 313 [64] Fu Q., Saltsburg H., Flytzani-Stephanopoulos M., Science, 2003, 301, 935 [65] Hackett S. F. J., Brydson R. M., Gass M. H., Harvey I., Newman A. D., Wilson K., Lee A. F., Angew. Chem., 2007, 119, 8747 [66] Kottwitz M., Li Y., Wang H., Frenkel A. I., Nuzzo R. G., Chemistry: Methods, 2021, 1, 278 [67] Qi P., Wang J., Djitcheu X., He D., Liu H., Zhang Q., RSC Adv., 2022,12, 1216 [68] Egerton R. F., Watanabe M., Ultramicroscopy, 2018, 193, 111 [69] Tieu P., Yan X., Xu M., Christopher P., Pan X., Small, 2021, 17, e2006482 [70] Gao Z., Li A., Ma D., Zhou W., Topics in Catalysis,2022, https://doi.org/ 10.1007/s11244-022-01577-7 [71] Van Tendeloo G., Bals S., Van Aert S., Verbeeck J., Van Dyck D., Adv. Mater.2012, 24, 5655 [72] Howie A., Microscopy and Microanalysis,2011, 17, 1022 [73] Wang Q., Huang X., Zhao Z. L., Wang M., Xiang B., Li J., Feng Z., Xu H., Gu M., J. Am. Chem. Soc., 2020, 142, 7425 [74] Song B., Yang T. T., Yuan Y., Sharifi-Asl S., Cheng M., Saidi W. A., Liu Y., Shahbazian-Yassar R., ACS Nano, 2020,14, 4074 [75] Wu F., Yao N., Nano Energy, 2015, 13, 735 [76] Williams D. B., Carter C. B., Transmission Electron Microscopy, Springer, New York, 2009 [77] Egerton R. F., Electron Energy: Loss Spectroscopy in the Electron Microscope, Springer Science & Business Media, New York, 2011 [78] Senga R., Suenaga K., Nat. Commun., 2015, 6, 7943 [79] Hu C., Dai L., Adv. Mater., 2019, 31, e1804672 [80] Inagaki M., Toyoda M., Soneda Y., Morishita T., Carbon, 2018, 132, 104 [81] Chen Y. N., Zhang X., Zhou Z., Small Methods, 2019, 3, 1900050 [82] Lu Z., Wang B., Hu Y., Liu W., Zhao Y., Yang R., Li Z., Luo J., Chi B., Jiang Z., Li M., Mu S., Liao S., Zhang J., Sun X., Angew. Chem. Int. Ed., 2019, 58, 2622 [83] Yan H., Lin Y., Wu H., Zhang W., Sun Z., Cheng H., Liu W., Wang C., Li J., Huang X., Yao T., Yang J., Wei S., Lu J., Nat. Commun., 2017, 8, 1070 [84] Li P., Wang M., Duan X., Zheng L., Cheng X., Zhang Y., Kuang Y., Li Y., Ma Q., Feng Z., Liu W., Sun X., Nat. Commun., 2019, 10, 1711 [85] Zhang J., Liu J., Xi L., Yu Y., Chen N., Sun S., Wang W., Lange K. M., Zhang B., J. Am. Chem. Soc., 2018, 140, 3876 [86] Wang G., Zhang G., Ke X., Chen X., Chen X., Wang Y., Huang G., Dong J., Chu S., Sui M., Small, 2022, 18, e2107238 [87] Li S., Liu J., Yin Z., Ren P., Lin L., Gong Y., Yang C., Zheng X., Cao R., Yao S., Deng Y., Liu X., Gu L., Zhou W., Zhu J., Wen X., Xu B., Ma D., ACS Catal.,2019, 10, 907 [88] Cao X., Mirjalili A., Wheeler J., Xie W., Jang B. W. L., Front. Chem. Sci. Eng.,2015, 9, 442 [89] Zhang T., Walsh A. G., Yu J., Zhang P., Chem. Soc. Rev., 2021, 50, 569 [90] Yao Y., Hu S., Chen W., Huang Z.-Q., Wei W., Yao T., Liu R., Zang K., Wang X., Wu G., Yuan W., Yuan T., Zhu B., Liu W., Li Z., He D., Xue Z., Wang Y., Zheng X., Dong J., Chang C.-R., Chen Y., Hong X., Luo J., Wei S., Li W.-X., Strasser P., Wu Y., Li Y., Nat. Catal., 2019,2, 304 [91] Hannagan R. T., Giannakakis G., Réocreux R., Schumann J., Finzel J., Wang Y. C., Michaelides A., Deshlahra P., Christopher P., Flytzani-Stephanopoulos M., Stamatakis M., Sykes E. C. H., Science, 2021,372, 1444 [92] Peng Y., Geng Z., Zhao S., Wang L., Li H., Wang X., Zheng X., Zhu J., Li Z., Si R., Zeng J., Nano Lett., 2018, 18, 3785 [93] Liu H., Jin P., Xue Y. M., Dong C., Li X., Tang C. C., Du X. W., Angew. Chem. Int. Ed., 2015, 54, 7051 [94] Xiao J., Liu P., Wang C. X., Yang G. W., Prog. Mater. Sci., 2017, 87, 140 [95] Chinchilla L. E., Olmos C. M., Villa A., Carlsson A., Prati L., Chen X., Blanco G., Calvino J. J., Hungría A. B., Catal. Today, 2015, 253, 178 [96] Maris E., Ketchie W., Murayama M., Davis R., J. Catal., 2007, 251, 281 [97] Park J., Lee S., Kim H. E., Cho A., Kim S., Ye Y., Han J. W., Lee H., Jang J. H., Lee J., Angew. Chem. Int. Ed., 2019,58, 16038 [98] Tao H., Choi C., Ding L.-X., Jiang Z., Han Z., Jia M., Fan Q., Gao Y., Wang H., Robertson A. W., Hong S., Jung Y., Liu S., Sun Z., Chem., 2019, 5, 204 [99] Shi Z., Wang Y., Li J., Wang X., Wang Y., Li Y., Xu W., Jiang Z., Liu C., Xing W., Ge J., Joule, 2021, 5, 2164 [100] Shan J., Ye C., Chen S., Sun T., Jiao Y., Liu L., Zhu C., Song L., Han Y., Jaroniec M., Zhu Y., Zheng Y., Qiao S. Z., J. Am. Chem. Soc., 2021, 143, 5201 [101] Qi K., Cui X., Gu L., Yu S., Fan X., Luo M., Xu S., Li N., Zheng L., Zhang Q., Ma J., Gong Y., Lv F., Wang K., Huang H., Zhang W., Guo S., Zheng W., Liu P., Nat. Commun., 2019, 10, 5231 [102] Zhao X., Gao P., Yan Y., Li X., Xing Y., Li H., Peng Z., Yang J., Zeng J., J. Mater. Chem. A, 2017, 5, 20202 [103] Guo X., Gao H., Wang S., Yang G., Zhang X., Zhang J., Liu H., Wang G., Nano Lett., 2022, 22, 1225 [104] Zhang J., Wang E., Cui S., Yang S., Zou X., Gong Y., Nano Lett., 2022, 22, 1398 [105] He B., Zhang Y., Liu X., Chen L., ChemCatChem, 2020, 12, 1853 [106] Fang Z., Liu Y., Song C., Tao P., Shang W., Deng T., Zeng X., Wu J., J. Semicond., 2022, 43, 041104 [107] Zhang L., Wang K., Deng Q., Li W., Zhang X., Liu X., DNA and Cell Biology, 2019,38, 1346 [108] Wu X., Ke X., Sui M., J. Semicond., 2022, 43, 041106 [109] Wei S., Li A., Liu J. C., Li Z., Chen W., Gong Y., Zhang Q., Cheong W. C., Wang Y., Zheng L., Xiao H., Chen C., Wang D., Peng Q., Gu L., Han X., Li J., Li Y., Nat. Nanotechnol., 2018, 13, 856 [110] Poerwoprajitno A. R., Gloag L., Watt J., Cheong S., Tan X., Lei H., Tahini H. A., Henson A., Subhash B., Bedford N. M., Miller B. K., O’Mara P. B., Benedetti T. M., Huber D. L., Zhang W., Smith S. C., Gooding J. J., Schuhmann W., Tilley R. D., Nat. Catal., 2022, 5, 231 [111] DeRita L., Resasco J., Dai S., Boubnov A., Thang H. V., Hoffman A. S., Ro I., Graham G. W., Bare S. R., Pacchioni G., Pan X., Christopher P., Nat. Mater., 2019,18, 746 [112] Jiang S., Dai Q., Guo J., Li Y., J. Semicond., 2022, 43, 041101 [113] Hulsey M. J., Zhang B., Ma Z., Asakura H., Do D. A., Chen W., Tanaka T., Zhang P., Wu Z., Yan N., Nat. Commun., 2019, 10, 1330 [114] Lien H. T., Chang S. T., Chen P. T., Wong D. P., Chang Y. C., Lu Y. R., Dong C. L., Wang C. H., Chen K. H., Chen L. C., Nat. Commun., 2020, 11, 4233 [115] Hoang S., Guo Y., Binder A. J., Tang W., Wang S., Liu J. J., Tran H., Lu X., Wang Y., Ding Y., Kyriakidou E. A., Yang J., Toops T. J., Pauly T. R., Ramprasad R., Gao P. X., Nat. Commun., 2020, 11, 1062 [116] Shan J., Liu J., Li M., Lustig S., Lee S., Flytzani-Stephanopoulos M., Appl. Catal. B: Environ., 2018, 226, 534 [117] Dreimann J. M., Kohls E., Warmeling H. F. W., Stein M., Guo L. F., Garland M., Dinh T. N., Vorholt A. J., ACS Catalysis, 2019, 9, 4308 [118] Jiang Y., Chen Z., Han Y., Deb P., Gao H., Xie S., Purohit P., Tate M. W., Park J., Gruner S. M., Elser V., Muller D. A., Nature, 2018, 559, 343 [119] Ophus C., Microsc. Microanal., 2019, 25, 563 [120] Ke X., Zhang M., Zhao K., Su D., Small Methods, 2022, 6, 2101040 [121] Mitchell S., Pares F., Faust Akl D., Collins S. M., Kepaptsoglou D. M., Ramasse Q. M., Garcia-Gasulla D., Perez-Ramirez J., Lopez N., J. Am. Chem. Soc., 2022,144, 8018 [122] Wang Z., Ke X., Sui M., Front. Chem., 2022,10, 872117 |
[1] | LIU Zailun, SUN Like, ZHANG Qitao, TENG Zhenyuan, SUN Hongli, SU Chenliang. TiO2-supported Single-atom Catalysts: Synthesis, Structure, and Application [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1123-1138. |
[2] | WU Fan, LIU Pengxin. Surface Organometallic Chemistry for Single-site Catalysis and Single-atom Catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1139-1145. |
[3] | FAN Kui, SUN Yining, XU Pengcheng, GUO Jian, LI Zhenhua, SHAO Mingfei. Single-atom Catalysts Based on Layered Double Hydroxides [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1185-1196. |
[4] | MIAO Tianchang, DI Xin, HAO Feini, ZHENG Gengfeng, HAN Qing. Polymeric Carbon Nitride-based Single Atom Photocatalysts for CO2 Reduction to C1 Products [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1197-1206. |
[5] | TENG Zhenyuan, YANG Hongbin, ZHANG Qitao, OHNO Teruhisa. Carrier Dynamics and Surface Reaction Boosted by Polymer-based Single-atom Photocatalysts [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1207-1218. |
[6] | LIU Shuhui, ZHANG Fan, LIN Ronghe, LIU Wei. Full Metal Species Quantification of Metal Supported Catalysts Through Massive TEM Images Recognition [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1263-1267. |
[7] | ZHENG Meng, WANG Jin. Regulating the Oxygen Affinity of Single Atom Catalysts by Dual-atom Design for Enhanced Oxygen Reduction Reaction Activity [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1275-1281. |
[8] | SONG Weiyu, LV Xintong, GAO Yang, WANG Lu. Photocatalytic HER Performance of TiO2-supported Single Atom Catalyst Based on Electronic Regulation:A DFT Study [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1025-1031. |
[9] | WANG Zelin, LIU Guihao, SHEN Tianyang, TAN Ling, ZHAO Yufei, SONG Yu-Fei. Remote Synthesis of Layered Double Hydroxide Nanosheets Through the Automatic Chemical Robot [J]. Chemical Research in Chinese Universities, 2022, 38(1): 217-222. |
[10] | WANG Yuqing, TAO Li, CHEN Ru, LI Hao, SU Hui, ZHANG Nana, LIU Qinghua, WANG Shuangyin. Atomically Dispersed Fe on Nanosheet-linked, Defect-rich, Highly N-Doped 3D Porous Carbon for Efficient Oxygen Reduction [J]. Chemical Research in Chinese Universities, 2020, 36(3): 453-458. |
[11] | ZHU Mengzhao, WANG Jing, WU Yuen. Single-atom Catalysts for Polymer Electrolyte Membrane Fuel Cells [J]. Chemical Research in Chinese Universities, 2020, 36(3): 320-328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||