Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (4): 580-598.doi: 10.1007/s40242-023-3123-0
• Reviews • Previous Articles Next Articles
WANG Xinyi, ZHAO Zhenwei, ZAHRA Kiran, LI Junjun, ZHANG Zhicheng
Received:
2023-05-14
Online:
2023-08-01
Published:
2023-07-18
Contact:
ZHANG Zhicheng
E-mail:zczhang19@tju.edu.cn
Supported by:
WANG Xinyi, ZHAO Zhenwei, ZAHRA Kiran, LI Junjun, ZHANG Zhicheng. Sub-nanomaterials for Photo/Electro-catalytic CO2 Reduction: Achievements, Challenges, and Opportunities[J]. Chemical Research in Chinese Universities, 2023, 39(4): 580-598.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Intasian P., Prakinee K., Phintha A., Trisrivirat D., Weeranoppanant N., Wongnate T., Chaiyen P., Chem. Rev., 2021, 121(17), 10367 [2] Xu S., Carter E. A., Chem. Rev., 2021, 119(11), 6631 [3] Yang Y., Louisia S., Yu S., Jin J., Roh I., Chen C., Guzman M. V. F., Feijóo J., Chen P., Wang H., Pollock C. J., Huang X., Shao Y. T., Wang C., Muller D. A., Abruña H. D., Yang P., Nature, 2023, 614, 262 [4] Li X., Yu J. G., Jaroniec M., Chen X. B., Chem. Rev., 2019, 119(6), 3962 [5] Li Z., Mao C., Pei Q., Duchesne P. N., He T., Xia M., Wang J., Wang L., Song R., Jelle A. A., Meira D. M., Ge Q., Ghuman K. K., He L., Zhang X., Ozin A.G., Nat. Commun., 2022, 13, 7205 [6] Zhu Y., Gao Z., Zhang Z., Lin T., Zhang Q., Liu H., Gu L., Hu W., Nano Res., 2022, 15, 7861 [7] Yang C., Zhu Y., Liu J., Qin Y., Wang H., Liu H., Chen Y., Zhang Z., Hu W., Nano Energy, 2020, 77, 105126 [8] Zhou X., Liu H., Xia B., Ostrikov K. K., Zheng Y., Qiao S., SmartMat, 2022, 3(1), 111 [9] Yuan L., Qi M., Tang Z., Xu Y., Angew. Chem. Int. Ed., 2021, 60(39), 21150 [10] Yao S., He J., Gao F., Wang H., Lin J., Bai Y., Fang J., Zhu F., Huang F., Wang M., J. Mater. Chem. A, 2023, DOI:10.1039/d2ta09234d [11] Miao T., Di X., Hao F., Zheng G., Han Q., Chem. Res. Chinese Universities, 2022, 38(5), 1197 [12] Shi Y., Hou M., Li J., Li L., Zhang Z., Acta Phys.-Chim. Sin., 2022, 38, 2206020 [13] Yu L., Huang X., Zhang X., Zhang Z., Acta Phys.-Chim. Sin., 2022, 38(6), 7 [14] Ross M. B., Luna P. D., Li Y., Dinh C.-T., Kim D., Yang P., Sargent E. H., Nat. Catal., 2019, 2, 648 [15] Arán-Ais R. M., Scholten F., Kunze S., Rizo R., Cuenya B. R., Nat. Energy, 2020, 5, 317 [16] Li D., Yang K., Lian J., Yan J., Liu S., Adv. Energy Mater., 2022, 12(31), 2201070 [17] Deng X., Li R., Wu S., Wang L., Hu J., Ma J., Jiang W., Zhang N., Zheng X., Gao C., Wang L., Zhang Q., Zhu J., Xiong Y., J. Am. Chem. Soc., 2019, 141(27), 10924 [18] Nakajima T., Tamaki Y., Ueno K., Kato E., Nishikawa T., Ohkubo K., Yamazaki Y., Morimoto T., Ishitani O., J. Am. Chem. Soc., 2016, 138(42), 13818 [19] Fan K, Sun Y., Xu P., Guo J., Li Z., Shao M., Chem. Res. Chinese Universities, 2022, 38(5), 1185 [20] Li J., Sun Y., Zhang Z., SmartMat, 2023, DOI:10.1002/smm2.1209 [21] Qiu N., Li J., Wang H., Zhang Z., Sci. China Mater., 2022, 65(12), 3302 [22] Wan S., Wu J., Wang D., Liu H., Zhang Z., Ma J., Wang C., Chin. Chem. Lett., 2021, 32(2), 816 [23] Kistler T. A., Um M. Y., Cooper J. K., Sharp I. D., Agbo P., Adv. Energy Mater., 2021, 11(21), 2100070 [24] Chang X., Wang T., Yang P., Zhang G., Gong J., Adv. Mater., 2019, 31(31), 1804710 [25] Xin Z., Gao Y., Gao Y., Song H., Zhao J., Fan F., Xia A., Li X., Tung C., Wu L., Adv. Mater., 2022, 34(3), 2106662 [26] Zhang B., Zhang J., Duan R., Wan Q., Tan X., Su Z., Han B., Zheng L., Mo G., Nano Energy, 2020, 78, 105340 [27] Mariano R. G., McKelvey K., White H. S., Kanan M. W., Science, 2017, 358(6367), 1187 [28] Ni B., Shi Y., Wang X., Adv. Mater., 2018, 30(43), 1802031 [29] Ni B., Wang X., Chem. Sci., 2016, 7, 3978 [30] Ahmad T., Liu S., Sajid M., Li K., Ali M., Liu L., Chen W., Nano Res. Energy, 2022, 1(2), e9120021 [31] Gao Z., Li J., Zhang Z., Hu W., Chin. Chem. Lett., 2022, 33(5), 2270 [32] Yan Z. H., Du M. H., Liu J., Jin S., Wang C., Zhuang G. L., Kong X. J., Sheng L. L., Zheng L. S., Nat. Commun., 2018, 9, 3353 [33] Fang L., Seifert S., Winans R. E., Li T., Small Methods, 2021, 5(5), 2001194 [34] Hori Y., Kikuchi K., Suzuki S., Chem. Lett., 1985, 14(11), 1695 [35] Birdja Y. Y., Gallent E. P., Figueiredo M. C., Göttle A. J., Vallejo F. C., Koper M. T. M., Nat. Energy, 2019, 4, 732 [36] Fujishima A., Honda K., Nature, 1972, 238(5358), 37 [37] Penfold T. J., Szlachetko J., Santomauro F. G., Britz A., Gawelda W., Doumy G., March A. M., Southworth S. H., Rittmann J., Abela R., Chergui M., Milne C. Nat. Commun., 2018, 9(1), 478 [38] Zhao G., Hu J., Long X., Zou J., Gang Y., Jiao F., Small, 2021, 17(49), 2102155 [39] Halmann M., Nature, 1978, 275(5676), 115 [40] Zhang W., Jin Z., Chen Z., Adv Sci., 2022, 9(9), e2105204 [41] Gao C., Low J., Long R., Kong T., Zhu J., Xiong Y., Chem. Rev., 2020, 120(21), 12175 [42] Liu D., Wan X., Kong T., Han W., Xiong Y., J. Mater. Chem. A, 2022, 10(11), 5878 [43] Yang X., Tat T., Libanori A., Cheng J., Xuan X., Liu N., Yang X., Zhou J., Nashalian A., Chen J., Mater. Today, 2021, 45, 54 [44] Liang Z., Song L., Sun M., Huang B., Du Y., Sci. Adv., 2021, 7(47), eabl4915 [45] Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Zhang T., Nat. Chem., 2011, 3(8), 634 [46] Pan Y., Lin R., Chen Y., Liu S., Zhu W., Cao X., Chen W., Wu K., Cheong W. C., Wang Y., Zheng L., Luo J., Lin Y., Liu Y., Liu C., Li J., Lu Q., Chen X., Wang D., Peng Q., Chen C., Li Y., J. Am. Chem. Soc., 2018, 140(12), 4218 [47] Huang P., Cheng M., Zhang H., Zuo M., Xiao C., Xie Y., Nano Energy, 2019, 61, 428 [48] Yang F., Song P., Liu X., Mei B., Xing W., Jiang Z., Gu L., Xu W., Angew. Chem. Int. Ed., 2018, 130(38), 12483 [49] Chen S., Zhang Z., Jiang W., Zhang S., Zhu J., Wang L., Ou H., Zaman S., Tan L., Zhu P., Zhang E., Jiang P., Su Y., Wang D., Li Y., J. Am. Chem. Soc., 2022, 144(28), 12807 [50] Gao C., Chen S., Wang Y., Wang J., Zheng X., Zhu J., Song L., Zhang W., Xiong Y., Adv. Mater., 2018, 30(13), 1704624 [51] Li X., Yang X., Huang Y., Zhang T., Liu B., Adv. Mater., 2019, 31(50), 1902031 [52] Gao C., Low J., Long R., Kong T., Zhu J., Xiong Y., Chem. Rev., 2020, 120(21), 12175 [53] Yan Q., Wu D., Chu S., Chen Z., Lin Y., Chen M., Zhang J., Wu X., Liang H., Nat. Commun., 2019, 10(1), 4977 [54] Zhu W., Wu Z., Foo G., Gao X., Zhou M., Liu B, Veith G., Wu P., Browning K., Lee H., Li H., Dai S., Zhu H., Nat. Commun., 2017, 8, 15291 [55] Cao Y., Guo L., Dan M., Doronkin D. E., Han C., Rao Z., Liu Y., Meng J., Huang Z., Zheng K., Chen P., Dong F., Zhou Y., Nat. Commun., 2021, 12(1), 1675 [56] Shen J., Li Y., Zhao H., Pan K., Li X., Qu Y., Wang G., Wang D., Nano Res., 2019, 12, 1931 [57] Han Z., Zhao Y., Gao G., Zhang W., Qu Y., Zhu H., Zhu P., Wang G., Small, 2021, 17(26), 2102089 [58] Kou M., Liu W., Wang Y., Huang J., Chen Y., Zhou Y., Chen Y., Ma M., Lei K., Xie H., Wong P. K., Ye L., Appl. Catal. B:Environ., 2021, 291, 120146 [59] Yang D., Yu H., He T., Zuo S., Liu X., Yang H., Ni B., Li H., Gu L., Wang D., Wang X., Nat. Commun., 2019, 10(1), 3844 [60] Wang T., Guo L., Pei H., Chen S., Li R., Zhang J., Peng T., Small, 2021, 17(45), 2102957 [61] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306(5696), 666 [62] Plana D., Montano J. F., Celorrio V., Pastor V., Fermín D. J., Chem. Commun., 2013, 49(93), 10962 [63] Asadi M., Kumar B., Behranginia A., Rosen B. A., Baskin A., Repnin N., Pisasale D., Phillips P., Zhu W., Haasch R., Klie R. F., Kral P., Abiade J., Khojin A. S., Nat. Commun., 2014, 5(1), 4470 [64] Gao S., Jiao X., Sun Z., Zhang W., Sun Y., Wang C., Hu Q., Zu X., Yang F., Yang S., Liang L., Wu J., Xie J., Angew. Chem. Int. Ed., 2016, 55(2), 698 [65] Furukawa H., Cordova K. E., Keeffe M. O., Yaghi O. M., Science, 2013, 341(6149), 1230444 [66] Zhang X. D., Hou S. Z., Wu J., X., Gu Z. Y., Chem. Eur. J., 2020, 26(7), 1604 [67] Zhu H. J., Lu M., Wang Y. R., Yao S. J., Zhang M. Kan Y. H., Liu J., Chen Y., Li S. L., Lan Y. Q., Nat. Commun., 2020, 11(1), 497 [68] Wang X., He J., Li J., Lu G., Dong F., Majima T., Zhu M., Appl. Catal. B-Environ., 2020, 277, 119230 [69] Wang Z., Xu S. M., Tan L., Liu G., Shen T., Yu C., Wang H., Tao Y., Cao X., Zhao Y., Song Y. F., Appl. Catal. B:Environ., 2020, 270, 118884 [70] Hao X., Tan L., Xu Y., Wang Z., Wang X., Bai S., Ning C., Zhao J., Zhao Y., Song Y. F., Ind. Eng. Chem. Res., 2020, 59(7), 3008 [71] Hao Y., Chen L., Li J., Guo Y., Su S., Shu M., Zhang Q., Gao W., Li S., Yu Z., Gu L., Feng X., Yin A., Si R., Zhang Y., Wang B., Yan C., Nat. Commun., 2021, 12, 2682 [72] Xiang Y., Dong W., Wang P., Wang S., Ding X., Ichihara F., Wang Z., Wada Y. Jin S., Weng Y., Chen H., Ye J., Appl. Catal. B:Environ., 2020, 274, 119096 [73] Gong Y. N., Zhong W., Li Y., Qiu Y., Zheng L., Jiang J., Jiang H. L., J. Am. Chem. Soc., 2020, 142(39), 16723 [74] Wang X., Fu Y., Tranca D., Jiang K., Zhu J., Zhang J., Han S., Ke C., Lu C., Zhuang X., ACS Appl. Energy Mater., 2021, 4(3), 2891 [75] Lin C. C., Liu T. R., Lin S. R., Boopathi K. M., Chiang C. H., Tzeng W. Y., Chien W. H. C., Hsu H. S., Luo C. W., Tsai H. Y., Chen H. A., Kuo P. C., Shiue J., Chiou J. W., Pong W. F., Chen C. C., Chen C. W., J. Am. Chem. Soc., 2022, 144(34), 15718 [76] Zeng G., Qiu J., Li Z., Pavaskar P., Cronin S. B., ACS Catal., 2014, 4(10), 3512 [77] Xu Y., Jia Y., Zhang Y., Nie R., Zhu Z., Wang J., Jing H., Appl. Catal. B:Environ., 2017, 205, 254 [78] Jiang X. X., Hu X. D., Tarek M., Saravanan P., Alqadhi R., Chin S. Y., Khan M. M. R., J. CO2 Util., 2020, 40, 101222 [79] Wang J., Wei Y., Yang B., Wang B., Chen J., Jing H., J. Catal., 2019, 377, 209 [80] Hu S., Liu H., Wang P., Wang X., J. Am. Chem. Soc., 2013, 135(30), 11115 [81] Cai X., Li G., Hu W., Zhu Y., ACS Catal., 2020, 12(17), 10638 [82] Chakraborty I., Pradeep T., Chem. Rev., 2017, 117(12), 8208 [83] Zhang B., Chen Y., Wang J., Pan H., Sun W., Adv. Funct. Mater., 2022, 32(24), 2202227 [84] Kauffman D. R., Alfonso D., Matranga C., Qian C., Jin R., J. Am. Chem. Soc., 2012, 134(24), 10237 [85] Mi H., C., Yi C., Gao M. R., Yu M. R., Liu S., Luo J. L., ACS Appl. Mater. Interfaces, 2022, 14(38), 43257 [86] Yang D., Pei W., Zhou S., Zhao J., Ding W., Zhu Y., Angew. Chem. Int. Ed., 2020, 59(5), 1919 [87] Liu C., Yang B., Tyo E., Seifert S., DeBartolo J., Issendorff B. V., Zapol P., Vajda S., Curtiss L. A., J. Am. Chem. Soc., 2015, 137(27), 8676 [88] Rong W., Zou H., Zang W., Xi S., Wei S., Long B., Hu J., Ji Y., Duan L., Angew. Chem. Int. Ed., 2021, 60(1), 466 [89] Hu Q., Han Z., Wang X., Li G., Wang Z., Huang X., Yang H., Ren X., Zhang Q., Liu J., He C., Angew. Chem. Int. Ed., 2020, 59(43), 19054 [90] Zhang H., Yang Y., Liang Y., Li J., Zhang A., Zheng H., Geng Z., Li F., Zeng J., ChemSusChem, 2022, 15(1), 43257 [91] Li S., Nagarajan A. V., Li Y., Kauffman Y., Mpourmpakis G., Jin R., Nanoscale, 2021, 13(4), 2333 [92] Li S., Alfonso D., Nagarajan A., V., House S. D., Yang J. C. Kauffman D. R., Mpourmpakis G., Jin R., ACS Catal., 2020, 10(20), 12011 [93] Seong H., Choi M., Park S., Kim H. W. Kim J., Kim W., Yoo J. S., Dongil L., ACS Energy Lett., 2022, 7(12), 4177 [94] Li Y., Yang Y., Chen G., Fan J., Xiang Q., Rare Met., 2022, 41(1), 3045 [95] Cui X., Wang J., Liu B., Ling S., Long R., Xiong Y., J. Am. Chem. Soc., 2018, 140(48), 16514 [96] Tian J., Zhong K., Zhu X., Yang J., Mo Z., Liu J., Dai J., She Y., Song Y., Li H., Xu H., Chem. Eng. J., 2023, 451(2), 138392 [97] Yao S., Sun B. Q., Zhang P., Tian Z. Y., Yin H. Q., Zhang Z. M., Appl. Catal. B:Environ., 2022, 317, 121702 [98] Tang Y., Jia X., Guo Y., Geng Z., Wang C., Liu L., Zhang J., Guo W., Tan X., Yu T., Ye J., Adv. Energy Mater., 2023, 13(14), 2203827 [99] Jiang Y., Yu Y., Zhang X., Weinert M., Song X., Ai J., Han L., Fei H., Angew. Chem. Int. Ed., 2021, 60(43), 17388 [100] Dai S., Tissot A., Serre C., Adv. Energy Mater., 2022, 12(4), 2100061 [101] Dai S., Kajiwara T., Ikeda M., Romero-Muñiz I., Gilles P., Platero-Prats A., Vimont A., Daturi M., Tissot A., Xu Q., Serre C., Angew. Chem. Int. Ed., 2022, 61(43), e202211848 [102] Xu J., Zhu X., Xia S., Liu Y., Kan C., Shi D., J. Mater. Chem. A, 2022, 10(48), 25431 [103] Cao L., Raciti D., Li C., Livi K. J. T., Rottmann P. F., Hemker K. J., Mueller T., Wang C., ACS Catal., 2017, 7(12), 8578 [104] Zhu W., Zhang Y. J., Zhang H., Lv H., Li Q., Michalsky R., Peterson A. A., Sun S., J. Am. Chem. Soc., 2014, 136(46), 16132 [105] Zhu S., Wang Q., Qin X., Gu M., Tao R., Lee B. P., Zhang L., Yao Y., Li T., Shao M., Adv. Energy Mater., 2018, 32(8), 1802238 [106] Han N., Sun M., Zhou Y., Xu J., Cheng C., Zhou R., Zhang L., Luo J., Huang B., Li Y., Adv. Mater., 2021, 33(4), 2005821 [107] Cheng X., Zhang S., Wang X., Nano Lett., 2021, 21(23), 9845 [108] Zhang S., Lu Q., Yu B., Cheng X., Zhuang J., Wang X., Adv. Funct. Mater., 2021, 31(20), 2100703 [109] Yang D., Zuo S., Yang H., Wang X., Adv. Energy Mater., 2021, 11(16), 2100272 [110] Liu J., Li Y., Chen Z., Liu N., Zheng L., Shi W., Wang X., J. Am. Chem. Soc., 2021, 17(4), 2006260 [111] Li C. F., Guo R. T., Wu T., Pan W. G., Nanoscale, 2022, 14(7), 16033 [112] Yang H., Yang D., Wang X., Angew. Chem. Int. Ed., 2020, 59(36), 15527 [113] Li J., Pan W., Liu Q., Chen Z., Chen Z., Feng X., Chen H., J. Am. Chem. Soc., 2021, 143(17), 6551 [114] Niu H., Xia C., Huang L., Zaman S., Maiyalagan T., Guo W., You B., Xia B., Chin. J. Catal., 2022, 43(6), 1459 [115] Chen H., Zhou Y., Guo W., Yu X. B., Chin. Chem. Lett., 2022, 33, 1831 [116] Fang W., Huang L., Zaman S., Wang Z., Han Y., Xia B., Chem. Res. Chinese Universities, 2020, 36(4), 611 [117] Gong L., Yang H., Wang H., Qi R., Wang J., Chen S., You B., Dong Z., Liu H., Xia B. Y., Nano Res., 2021, 14(12), 4528 [118] Huang L., Zaman S., Wang Z., Niu H., You B., Xia B. Y., Acta Phys.-Chim. Sin., 2021, 37(9), 2009035 [119] Liu H., Zhang F., Wang H., Xue J., Guo Y., Qian Q., Zhang G., Energy Environ. Sci., 2021, 14(10), 5339 [120] Zhang H., Wang Y., Zuo S., Zhou W., Zhang J., Lou X. W., J. Am. Chem. Soc., 2021, 143(5), 2173 [121] Zhao Z., Liu Z., Wang T., Teng F., Wenjun J., Li J., Zhang Z., Yang Y., J. Mater. Chem. A, 2022, 10(6), 2924 |
[1] | LI Boyang, OU Honghui, CHEN Shenghua, SU Ya-Qiong, WANG Dingsheng. Recent Advances in CO2 Reduction Reaction to Value-added C1 Products by Single-atom Catalysts [J]. Chemical Research in Chinese Universities, 2023, 39(4): 527-544. |
[2] | DU Yuncheng, ZHENG Xuchen, XUE Yurui, LI Yuliang. Bismuth/Graphdiyne Heterostructure for Electrocatalytic Conversion of CO2 to Formate [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1380-1386. |
[3] | HE Kai, LIU Shijia, ZHAO Guiyan, QIN Yucai, BI Yanfeng, SONG Lijuan. Ni-W Catalysts Supported on Mesoporous SBA-15: Trace W Steering CO2 Methanation [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1504-1511. |
[4] | Samavia RAFIQ, Zulfiqar Ali RAZA, Muhammad ASLAM, Muhammad Junaid BAKHTIYAR. Graphene Nanosheets Decorated with Copper Oxide Nanoparticles for the Photodegradation of Methylene Blue [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1518-1525. |
[5] | LIU Xiaodong, WANG Xiangchen, XU Na, ZHANG Zhong, LI Xiaohui, LIU Guocheng, WANG Xiuli. A Multifunctional {P2Mo5}-based Hybrid Applying to Catalysis, Electrocatalysis and Dye Adsorption [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1553-1560. |
[6] | XU Guangyuan, LIU Qin, YAN Huan. Recent Advances of Single-atom Catalysts for Electro-catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1146-1150. |
[7] | MIAO Tianchang, DI Xin, HAO Feini, ZHENG Gengfeng, HAN Qing. Polymeric Carbon Nitride-based Single Atom Photocatalysts for CO2 Reduction to C1 Products [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1197-1206. |
[8] | MA Chunrong, SONG Bingyi, MA Zhentao, WANG Xiaoqian, TIAN Lin, ZHANG Haoran, CHEN Cai, ZHENG Xusheng, YANG Li-ming, WU Yuen. A Supported Palladium on Gallium-based Liquid Metal Catalyst for Enhanced Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1219-1225. |
[9] | SONG Weiyu, LV Xintong, GAO Yang, WANG Lu. Photocatalytic HER Performance of TiO2-supported Single Atom Catalyst Based on Electronic Regulation:A DFT Study [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1025-1031. |
[10] | JI Yuancheng, XU Jiayun, SUN Hongcheng, and LIU Junqiu. Artificial Photosynthesis(AP): from Molecular Catalysts to Heterogeneous Materials [J]. Chemical Research in Chinese Universities, 2022, 38(3): 688-697. |
[11] | DU Shihao, BIAN Xuanang, ZHAO Yunxuan, SHI Run, and ZHANG Tierui. Progress and Prospect of Photothermal Catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(3): 723-734. |
[12] | HAO Zhimin, LIU Dapeng, GE Huaiyun, ZUO Xintao, FENG Xilan, SHAO Mingzhe, YU Haohan, YUAN Guobao, and ZHANG Yu. Preparation of Quaternary FeCoMoCu Metal Oxides for Oxygen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(3): 823-828. |
[13] | LIU Shujing, GUO Jia. Two-dimensional Covalent Organic Frameworks: Intrinsic Synergy Promoting Photocatalytic Hydrogen Evolution [J]. Chemical Research in Chinese Universities, 2022, 38(2): 373-381. |
[14] | HU Guilin, HE Jingyi, LI Yongjun. Application of Graphdiyne and Its Analogues in Photocatalysis and Photoelectrochemistry [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1195-1212. |
[15] | FU Xinliang, ZHU Aonan, CHEN Xiaojie, ZHANG Shifu, WANG Mei, YUAN Mingjian. Stabilization of Cu/Ni Alloy Nanoparticles with Graphdiyne Enabling Efficient CO2 Reduction [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1328-1333. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||