Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (5): 806-823.doi: 10.1007/s40242-024-4166-6
• Reviews • Previous Articles Next Articles
CHEN Yingqi, BUDIANTA Richard, NING Yingying
Received:
2024-07-15
Online:
2024-10-01
Published:
2024-09-26
Contact:
NING Yingying,yning@scut.edu.cn
E-mail:yning@scut.edu.cn
Supported by:
CHEN Yingqi, BUDIANTA Richard, NING Yingying. Near-infrared Emissive 1,2-Dioxetane-based Chemiluminescent Probes[J]. Chemical Research in Chinese Universities, 2024, 40(5): 806-823.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Vacher M., Fdez. Galván, I., Ding, B., Schramm S., Berraud-Pache R., Naumov P., Ferré N., Liu Y., Navizet I., Roca-Sanjuán D., Baader W. J., Lindh R., Chem. Rev., 2018, 118, 6927. [2] Yang M., Huang J., Fan J., Du J., Pu K., Peng X., Chem. Soc. Rev., 2020, 49, 6800. [3] García-Campaña A. M., Baeyens W. R. G., Analusis, 2000, 28, 686. [4] Yang X., Chen X., Hou G., Guan R., Shao R., Xie M., Adv. Funct. Mater., 2016, 26, 393. [5] You X., Li Y., Arab. J. Chem., 2019, 12, 69. [6] Yang J., Yin W., Van R., Yin K., Wang P., Zheng C., Zhu B., Ran K., Zhang C., Kumar M., Shao Y., Ran C., Nat. Commun., 2020, 11, 4052. [7] Ye S., Hananya N., Green O., Chen H., Zhao A. Q., Shen J., Shabat D., Yang D., Angew. Chem. Int. Ed., 2020, 59, 14326. [8] Gholap S. P., Yao C., Green O., Babjak M., Jakubec P., Malatinský T., Ihssen J., Wick L., Spitz U., Shabat D., Bioconjug. Chem., 2021, 32, 991. [9] Peukert C., Popat Gholap S., Green O., Pinkert L., van den Heuvel J., van Ham M., Shabat D., Brönstrup M., Angew. Chem. Int. Ed., 2022, 61, e202201423. [10] Dai Y., Zhang K., Yuan X., Xie X., Zhan Z., Lv Y., Anal. Chem., 2023, 95, 8310. [11] Ning Y., Tang J., Liu Y. W., Jing J., Sun Y., Zhang J. L., Chem. Sci., 2018, 9, 3742. [12] Ning Y., Cheng S., Wang J. X., Liu Y. W., Feng W., Li F., Zhang J. L., Chem. Sci., 2019, 10, 4227. [13] Shang A., Zhao L., Li Z., Cheng Z., Jin H., Feng Z., Chen Z., Zhang H., Lu P., Chem. Res. Chinese Universities, 2022, 38, 1461. [14] Li X., Tan W., Bai X., Li F., Chem. Res. Chinese Universities, 2023, 39, 192. [15] Li C., Zhang Y., Wang M., Zhang Y., Chen G., Li L., Wu D., Wang Q., Biomaterials, 2014, 35, 393. [16] Yoshida H., Nakao R., Nohta H., Yamaguchi M., Dyes Pigm., 2000, 47, 239. [17] Periyasami G., Martelo L., Baleizão C., Berberan-Santos M. N., New J. Chem., 2014, 38, 2258. [18] Chen F., Zhang Y., Li T., Peng D., Qi Z., Song J., Deng T., Liu F., Chin. Chem. Lett., 2023, 34, 107496. [19] Rink S., Duerkop A., Jacobi von Wangelin A., Seidel M., Baeumner A. J., Anal. Chim. Acta, 2021, 1188, 339161. [20] Teranishi K., Luminescence, 2007, 22, 147. [21] Goto T., Takagi T., Bull. Chem. Soc. Jpn., 1980, 53, 833. [22] Toya Y., Kayano T., Sato K., Goto T., Bull. Chem. Soc. Jpn., 1992, 65, 2475. [23] Chandross E. A., Tetrahedron Lett., 1963, 4, 761. [24] Fan W., Li L., Yuan J., Ma X., Jia J., Zhang X., Anal. Chem., 2021, 93, 17043. [25] Huang J., Deng Z., Ding C., Jin Y., Wang B., Chen J., Microchem. J., 2022, 181, 107782. [26] Wang C., Wu Z., Hao M., Chen B., Zhu J., Cui X., Wang T., Sensor. Actuat. B: Chem., 2023, 388, 133840. [27] Chen Z., Su L., Wu Y., Liu J., Wu R., Li Q., Wang C., Liu L., Song J., Proc. Natl. Acad. Sci., 2023, 120, e2205186120. [28] Luo T., Huang S., Bai S., Feng B., Huang W., Cheng X., Liu M., Yao H., Zeng W., Food Chem., 2024, 447, 138954. [29] Merényi G., Lind J., Eriksen T. E., J. Biolumin. Chemilumin., 1990, 5, 53. [30] Chen F., Xia X., Ye D., Li T., Huang X., Cai C., Zhu C., Lin C., Deng T., Liu F., Anal. Chem., 2023, 95, 5773. [31] Liu C., Wang X., Liu J., Yue Q., Chen S., Lam J. W. Y., Luo L., Tang B. Z., Adv. Mater., 2020, 32, 2004685. [32] Shimomura O., Goto T., Hirata Y., B. Chem. Soc. Jpn., 1957, 30, 329. [33] Lee Y. D., Lim C. K., Singh A., Koh J., Kim J., Kwon I. C., Kim S., ACS Nano, 2012, 6, 6759. [34] Samadi-Maybodi A., Akhoondi R., Javad Chaichi M., J. Fluoresc., 2010, 20, 671. [35] Kazemi S. Y., Abedirad S. M., Spectrochim. Acta A, 2023, 292, 122367. [36] Zhang C., Jin J., Liu K., Ma X., Zhang X., Chin. Chem. Lett., 2021, 32, 3931. [37] Li L., Lin D., Yang F., Xiao Y., Yang L., Yu S., Jiang C., ACS Appl. Nano Mater., 2021, 4, 3932. [38] Schaap A. P., Chen T., Handley R. S., DeSilva R., Giri B. P., Tetrahedron Lett., 1987, 28, 1155. [39] Koo J. Y., Schuster G. B., J. Am. Chem. Soc., 1977, 99, 6107. [40] Gnaim S., Shabat D., J. Am. Chem. Soc., 2017, 139, 10002. [41] Babin B. M., Fernandez-Cuervo G., Sheng J., Green O., Ordonez A. A., Turner M. L., Keller L. J., Jain S. K., Shabat D., Bogyo M., ACS Cent. Sci., 2021, 7, 803. [42] Das S., Ihssen J., Wick L., Spitz U., Shabat D., Chem. Eur. J., 2020, 26, 3647. [43] Gu B., Dong C., Shen R., Qiang J., Wei T., Wang F., Lu S., Chen X., Sens. Actuat. B: Chem., 2019, 301, 127111. [44] Gutkin S., Gandhesiri S., Brik A., Shabat D., Bioconjug. Chem., 2021, 32, 2141. [45] Gutkin S., Green O., Raviv G., Shabat D., Portnoy O., Bioconjug. Chem., 2020, 31, 2488. [46] Roth-Konforti M. E., Bauer C. R., Shabat D., Angew. Chem. Int. Ed., 2017, 56, 15633. [47] Roth-Konforti M., Green O., Hupfeld M., Fieseler L., Heinrich N., Ihssen J., Vorberg R., Wick L., Spitz U., Shabat D., Angew. Chem. Int. Ed., 2019, 58, 10361. [48] Shelef O., Gutkin S., Feder D., Ben-Bassat A., Mandelboim M., Haitin Y., Ben-Tal N., Bacharach E., Shabat D., Chem. Sci., 2022, 13, 12348. [49] Son S., Won M., Green O., Hananya N., Sharma A., Jeon Y., Kwak J. H., Sessler J. L., Shabat D., Kim J. S., Angew. Chem. Int. Ed., 2019, 58, 1739. [50] Zhao C., Cui H., Duan J., Zhang S., Lv J., Anal. Chem., 2018, 90, 2201. [51] Hananya N., Eldar Boock A., Bauer C. R., Satchi-Fainaro R., Shabat D., J. Am. Chem. Soc., 2016, 138, 13438. [52] Wei X., Huang J., Zhang C., Xu C., Pu K., Zhang Y., Angew. Chem. Int. Ed., 2023, 62, e202213791. [53] Takakura H., Molecules, 2021, 26, 1618. [54] Green O., Eilon T., Hananya N., Gutkin S., Bauer C. R., Shabat D., ACS Cent. Sci., 2017, 3, 349. [55] Gutkin S., Tannous R., Jaber Q., Fridman M., Shabat D., Chem. Sci., 2023, 14, 6953. [56] Bronstein I., Edwards B., Voyta J. C., J. Biolumin. Chemilumin., 1989, 4, 99. [57] Matsumoto M., Akimoto T., Matsumoto Y., Watanabe N., Tetrahedron Lett., 2005, 46, 6075. [58] Huang J., Cheng P., Xu C., Liew S. S., He S., Zhang Y., Pu K., Angew. Chem. Int. Ed., 2022, 61, e202203235. [59] Xu S., Pan W., Chen L., Liu S., Ren T., Liu H., Liu Y., Huan S., Yuan L., Zhang X., Biomaterials, 2023, 293, 121955. [60] Scholes G. D., Annu. Rev. Phys. Chem., 2003, 54, 57. [61] Watanabe N., Kino H., Watanabe S., Ijuin H. K., Yamada M., Matsumoto M., Tetrahedron, 2012, 68, 6079. [62] Yan Y., Shi P., Song W., Bi S., Theranostics, 2019, 9, 4047. [63] Yan Y., Wang X., Hai X., Song W., Ding C., Cao J., Bi S., TrAC Trends Anal. Chem., 2020, 123, 115755. [64] Dos Remedios C. G., Moens P. D. J., J. Struct. Biol., 1995, 115, 175. [65] Lin W., Yuan L., Cao Z., Feng Y., Song J., Angew. Chem. Int. Ed., 2010, 49, 375. [66] Cao D., Zhu L., Liu Z., Lin W., J. Photochem. Photobiol. C: Photochem. Rev., 2020, 44, 100371. [67] Han J., Jose J., Mei E., Burgess K., Angew. Chem. Int. Ed., 2007, 46, 1684. [68] Ryan L. S., Gerberich J., Haris U., Nguyen D., Mason R. P., Lippert A. R., ACS Sens., 2020, 5, 2925. [69] Kagalwala H. N., Gerberich J., Smith C. J., Mason R. P., Lippert A. R., Angew. Chem. Int. Ed., 2022, 61, e202115704. [70] Wu Y., Sutton G. D., Halamicek M. D. S., Xing X., Bao J., Teets T. S., Chem. Sci., 2022, 13, 8804. [71] Kagalwala H. N., Bueno L., Wanniarachchi H., Unruh D. K., Hamal K. B., Pavlich C. I., Carlson G. J., Pinney K. G., Mason R. P., Lippert A. R., Anal. Sens., 2023, 3, e202200085. [72] Green O., Gnaim S., Blau R., Eldar-Boock A., Satchi-Fainaro R., Shabat D., J. Am. Chem. Soc., 2017, 139, 13243. [73] Liu Q., Sun C., Dai R., Yan C., Zhang Y., Zhu W., Guo Z., Coord. Chem. Rev., 2024, 503, 215652. [74] Yang M., Zhang J., Shabat D., Fan J., Peng X., ACS Sens., 2020, 5, 3158. [75] Huang J., Jiang Y., Li J., Huang J., Pu K., Angew. Chem. Int. Ed., 2021, 60, 3999. [76] Huang J., Zhang C., Wang X., Wei X., Pu K., Angew. Chem. Int. Ed., 2023, 62, e202303982. [77] Liu J., Chen Z., Huo H., Chen L., Wu Y., Zhang X., Su L., Li Q., Song J., Chin. J. Chem., 2022, 40, 2400. [78] Liu J., Huang J., Wei X., Cheng P., Pu K., Adv. Mater., 2024, 36, 2310605. [79] Huang J., Huang J., Cheng P., Jiang Y., Pu K., Adv. Funct. Mater., 2020, 30, 2003628. [80] Haris U., Kagalwala H. N., Kim Y. L., Lippert A. R., Acc. Chem. Res., 2021, 54, 2844. [81] Yang J., Zhu B., Zhang J., Liang S. H., Shen S., Ran C., Angew. Chem. Int. Ed., 2024, e202409896. [82] Matsumoto M., Watanabe N., Kasuga N. C., Hamada F., Tadokoro K., Tetrahedron Lett., 1997, 38, 2863. [83] Li S., Zhang G., He Y., Yang L., Li H., Long C., Cui Y., Wang X., Anal. Chem., 2023, 95, 13191. [84] Watanabe N., Takatsuka H., Ijuin H. K., Matsumoto M., Tetrahedron, 2020, 76, 131203. [85] Shang Q., Li S., He Y., Zhang Y., Fu T., Han S., Huang W., Wang X., Xu J., Anal. Chem., 2024, 96, 2286. [86] Hananya N., Reid J. P., Green O., Sigman M. S., Shabat D., Chem. Sci., 2019, 10, 1380. [87] Tannous R., Shelef O., Gutkin S., David M., Leirikh T., Ge L., Jaber Q., Zhou Q., Ma P., Fridman M., Spitz U., Houk K. N., Shabat D., ACS Cent. Sci., 2024, 10, 28. [88] Zhan Z., Dai Y., Li Q., Lv Y., TrAC Trends Anal. Chem., 2021, 134, 116129. [89] Wang B., Chen Z., Cen X., Liang Y., Tan L., Liang E., Zheng L., Zheng Y., Zhan Z., Cheng K., Chem. Sci., 2022, 13, 2324. [90] Checa J., Aran J. M., J. Inflamm. Res., 2020, 13, 1057. [91] Li B., Kim Y. L., Lippert A. R., Antioxid. Redox Signal., 2022, 36, 337. [92] Sies H., Belousov V. V., Chandel N. S., Davies M. J., Jones D. P., Mann G. E., Murphy M. P., Yamamoto M., Winterbourn C., Nat. Rev. Mol. Cell Biol., 2022, 23, 499. [93] Cheng P., Miao Q., Li J., Huang J., Xie C., Pu K., J. Am. Chem. Soc., 2019, 141, 10581. [94] Nemes R., Koltai E., Taylor A. W., Suzuki K., Gyori F., Radak Z., Antioxidants, 2018, 7, 85. [95] Yang Y., Wang S., Lu L., Zhang Q., Yu P., Fan Y., Zhang F., Angew. Chem. Int. Ed., 2020, 59, 18380. [96] Zhang S., Yuan H., Sun S., Qin C., Qiu Q., Feng Y., Liu Y., Li Y., Xu L., Ying Y., Qi J., Wang Y., Adv. Sci., 2023, 10, 2207651. [97] Robinson P. K., Essays Biochem., 2015, 59, 1. [98] Shelef O., Gutkin S., Feder D., Ben-Bassat A., Mandelboim M., Haitin Y., Ben-Tal N., Bacharach E., Shabat D., Chem. Sci., 2022, 13, 123, 48. [99] Atia A., Abdullah A., Res. J. Pharm. Biol. Chem. Sci., 2014, 5, 533. [100] Lima E., Reis L. V., Molecules, 2023, 28, 5092. [101] Kwiatkowski S., Knap B., Przystupski D., Saczko J., Kędzierska E., Knap-Czop K., Kotlińska J., Michel O., Kotowski K., Kulbacka J., Biomed. Pharmacother., 2018, 106, 1098. [102] Ning Y., Jin G. Q., Zhang J. L., Acc. Chem. Res., 2019, 52, 2620. [103] Yanovsky R. L., Bartenstein D. W., Rogers G. S., Isakoff S. J., Chen S. T., Photodermatol. Photoimmunol. Photomed., 2019, 35, 295. [104] Kuang S., Zhu B., Zhang J., Yang F., Wu B., Ding W., Yang L., Shen S., Liang S. H., Mondal P., Kumar M., Tanzi R. E., Zhang C., Chao H., Ran C., Angew. Chem. Int. Ed., 2023, 62, e202312519. [105] Ran C., Pu K., Angew. Chem. Int. Ed., 2024, 63, e202314468. [106] Gao J., Chen Z., Li X., Yang M., Lv J., Li H., Yuan Z., Int. J. Mol. Sci., 2022, 23, 12556. [107] Vitorino R., Barros A. S., Guedes S., Caixeta D. C., Sabino-Silva R., Photodiagnosis Photodyn. Ther., 2023, 42, 103633. [108] Lou J., Tang X., Zhang H., Guan W., Lu C., Angew. Chem. Int. Ed., 2021, 60, 13029. [109] Baptista M. S., Cadet J., Di Mascio P., Ghogare A. A., Greer A., Hamblin M. R., Lorente C., Nunez S. C., Ribeiro M. S., Thomas A. H., Vignoni M., Yoshimura T. M., Photochem. Photobiol., 2017, 93, 912. [110] Digby E. M., Tung M. T., Kagalwala H. N., Ryan L. S., Lippert A. R., Beharry A. A., ACS Chem. Biol., 2022, 17, 1082. [111] Huang C., Zhou W., Wu R., Guan W., Ye N., Nanomaterials, 2023, 13, 1726. [112] Mei J., Leung N. L. C., Kwok R. T. K., Lam J. W. Y., Tang B. Z., Chem. Rev., 2015, 115, 11718. [113] Chen C., Zhang X., Gao Z., Feng G., Ding D., Nat. Protoc., 2024, 19, 2408. [114] Zhu Z., Tang Z., Phillips J. A., Yang R., Wang H., Tan W., J. Am. Chem. Soc., 2008, 130, 10856. [115] Coleman J. E., Annu. Rev. Biophys., 1992, 21, 441. [116] Harris H., Clin. Chim. Acta, 1990, 186, 133. [117] Adam W., Bronstein I., Edwards B., Engel T., Reinhardt D., Schneider F. W., Trofimov A. V., Vasil’ev R. F., J. Am. Chem. Soc., 1996, 118, 10400. [118] Schaap A. P., Akhavan H., Romano L. J., Clin. Chem., 1989, 35, 1863. [119] Fan N., Li P., Wu C., Wang X., Zhou Y., Tang B., ACS Appl. Bio. Mater., 2021, 4, 1740. [120] Ma Y., Li X., Li A., Yang P., Zhang C., Tang B., Angew. Chem. Int. Ed., 2017, 56, 13752. [121] Lu C., Zhang C., Wang P., Zhao Y., Yang Y., Wang Y., Yuan H., Qu S., Zhang X., Song G., Pu K., Chem., 2020, 6, 2314. |
[1] | JIAO Ziyue, WANG Xinli, GAO Jie, HUANG Xiao, WANG Yi. Waterproof Perovskite Quantum Dots for In-vivo Photoluminescence Bioimaging [J]. Chemical Research in Chinese Universities, 2024, 40(5): 901-906. |
[2] | SHAO Lin, HUANG Yijun, HONG Ling, XU Zishuo, YANG Xiye, LIU Chunchen, HUANG Fei, CAO Yong. Optimizing the π-Bridge of Non-fullerene Acceptors to Suppress Dark Current in NIR Organic Photodetectors [J]. Chemical Research in Chinese Universities, 2024, 40(4): 712-721. |
[3] | XIE Yuxin, QIN Zuojia, QIAN Ming, REN Tianbing, YUAN Lin. Progress and Challenges of Water-soluble NIR-II Organic Fluorophores for Fluorescence Imaging In vivo [J]. Chemical Research in Chinese Universities, 2024, 40(2): 190-201. |
[4] | WU Jun, LI Yongzhi, QIN Hanjiao, GAO Ying, YANG Bing, SHENG Jiyao, ZHANG Xuewen. Strategy for Detecting Systemic Treatment Sensitivity of Primary Liver Cancer Based on a Novel Infrared-emissive Organic Nanoparticle [J]. Chemical Research in Chinese Universities, 2024, 40(1): 145-152. |
[5] | LI Xinru, TAN Wenjia, BAI Xuemei, LI Feng. Stable Near-infrared-emitting Radical Nanoparticles for Fluorescence Imaging [J]. Chemical Research in Chinese Universities, 2023, 39(2): 192-196. |
[6] | WANG Yuda, ZULPYA Mahmut, ZHANG Xinyao, XU Shihan, SUN Jiao, DONG Biao. Recent Advances of Metal-Organic Frameworks-based Nanozymes for Bio-applications [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1324-1343. |
[7] | SHANG Anqi, ZHAO Lele, LI Zhenhua, CHENG Zhuang, JIN Haixu, FENG Zijun, CHEN Zhijun, ZHANG Haiquan, LU Ping. Rational Design of a Near-infrared Fluorescent Material with High Solid-state Efficiency, Aggregation-induced Emission and Live Cell Imaging Property [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1461-1466. |
[8] | CHEN Liquan, LI Dawei, REN Jinghan, LI Yameng, GAO Dong, XING Chengfen. Side Chain Functional Conjugated Porous Polymers for NIR Controlled Carbon Dioxide Adsorption and Release [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1467-1474. |
[9] | ZHANG Qian, LIANG Yuyan, XING Hang. Caging-Decaging Strategies to Realize Spatiotemporal Control of DNAzyme Activity for Biosensing and Bioimaging [J]. Chemical Research in Chinese Universities, 2022, 38(4): 902-911. |
[10] | HU Shifan, WANG Yafeng and SU Bin. Effect of Ionic Strength on the Electrochemiluminescence Generation by Tris(2,2'-bipyridyl)ruthenium(II)/Tri-n-propylamine [J]. Chemical Research in Chinese Universities, 2022, 38(3): 816-822. |
[11] | WANG Bingya, GUO Xiaomei, LIU Zuodong, WU Yongquan, HOU Ji-Ting. A Long-wavelength Emissive Phenothiazine Derived Fluorescent Probe for Detecting HOCl Upregulation in 5-FU Stimulated Living Cells [J]. Chemical Research in Chinese Universities, 2022, 38(2): 609-615. |
[12] | LI Haonan, WANG Zhao, HUO Fengwei, WANG Shutao. Dip-Pen Nanolithography(DPN): from Micro/Nano-patterns to Biosensing [J]. Chemical Research in Chinese Universities, 2021, 37(4): 846-854. |
[13] | HAN Lin, WANG Yuang, TANG Wantao, LIU Jianbing, DING Baoquan. Bioimaging Based on Nucleic Acid Nanostructures [J]. Chemical Research in Chinese Universities, 2021, 37(4): 823-828. |
[14] | TANG Lin, ZENG Xiaodong, ZHOU Hui, GUI Conghao, LUO Qiulin, ZHOU Wenyi, WU Jing, LI Qianqian, LI Yang, XIAO Yuling. Theranostic Gold Nanoclusters for NIR-II Imaging and Photodynamic Therapy [J]. Chemical Research in Chinese Universities, 2021, 37(4): 934-942. |
[15] | LU Feng, ZHAO Ting, SUN Xiaojun, WANG Zuqiang, FAN Quli, HUANG Wei. Rare-earth Doped Nanoparticles with Narrow NIR-II Emission for Optical Imaging with Reduced Autofluorescence [J]. Chemical Research in Chinese Universities, 2021, 37(4): 943-950. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||