Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2): 255-267.doi: 10.1007/s40242-024-4032-6
• Reviews • Previous Articles Next Articles
NAN Hexin, CAI Ming, KUANG Shi, NIE Zhou
Received:
2024-02-15
Revised:
2024-03-13
Online:
2024-04-01
Published:
2024-03-27
Contact:
NIE Zhou niezhou@hnu.edu.cn
Supported by:
NAN Hexin, CAI Ming, KUANG Shi, NIE Zhou. Monitoring of Cell Membrane Microenvironment Based on DNA Nanodevices[J]. Chemical Research in Chinese Universities, 2024, 40(2): 255-267.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Simons K., Ikonen E., Nature, 1997, 387, 569 [2] Singer S. J., Nicolson G. L., Science, 1972, 175, 720 [3] Bagheri Y., Ali A. A., You M., Front. Chem., 2020, 8, 603259 [4] Hamill O. P., Martinac B., Physio.l Rev., 2001, 81, 685 [5] Tekpli X., Holme J. A., Sergent O., Lagadic-Gossmann D., Toxicology, 2013, 304, 141 [6] Joyce J. A., Pollard J. W., Nat. Rev. Cancer, 2009, 9, 239 [7] Sun Y., Chen C. S., Fu J., Annu. Rev. Biophys, 2012, 41, 519 [8] Ali M. M., Kang D. K., Tsang K., Fu M., Karp J. M., Zhao W., Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2012, 4, 547 [9] Wang M., Li X., He F., Li J., Wang H.-H., Nie Z., ChemBioChem, 2022, 23, e202200119 [10] Xu W., He W., Du Z., Zhu L., Huang K., Lu Y., Luo Y., Angew. Chem. Int. Ed., 2021, 60, 6890 [11] Chen Y. J., Groves B., Muscat R. A., Seelig G., Nat. Nanotechnoly, 2015, 10, 748 [12] Micura R., Höbartner C., Chem. Soc. Rev., 2020, 49, 7331 [13] Zheng L. L., Li J. Z., Li Y. X., Gao J. B., Dong J. X., Gao Z. F., Front. Chem., 2021, 9, 732770 [14] Gehring K., Leroy J. L., Guéron M., Nature, 1993, 363, 561 [15] Abou Assi H., Garavís M., González C., Damha M. J., Nucleic Acids Res., 2018, 46, 8038 [16] Dong Y., Yang Z., Liu D., Acc. Chem. Res., 2014, 47, 1853 [17] Chandrasekaran A. R., Rusling D. A., Nucleic Acids Res., 2018, 46, 1021 [18] Hu Y., Cecconello A., Idili A., Ricci F., Willner I., Angew. Chem. Int. Ed., 2017, 56, 15210 [19] Chakraborty S., Sharma S., Maiti P.K., Krishnan Y., Nucleic Acids Res., 2009, 37, 2810 [20] Hu Y., Ying J., Mater. Today, 2023, 63, 188 [21] Mariottini D., Idili A., Nijenhuis M.A.D., Ercolani G., Ricci F., J. Am. Chem. Soc., 2019, 141, 11367 [22] Gong L., Zhao Z., Lv Y. F., Huan S. Y., Fu T., Zhang X. B., Shen G. L., Yu R. Q., Chem. Commun. (Camb), 2015, 51, 979 [23] Breaker R. R., Joyce G. F., Chem. Biol., 1994, 1, 223 [24] Jia S.-M., Liu X.-F., Kong D.-M., Shen H.-X., Biosens. Bioelectron., 2012, 351, 407 [25] Tuerk C., Gold L., Science, 1990, 249, 505 [26] Li L., Xu S., Yan H., Li X., Yazd H. S., Li X., Huang T., Cui C., Jiang J., Tan W., Angew. Chem. Int. Ed., 2021, 60, 2221 [27] DeLuca M., Shi Z., Castro C. E., Arya G., Nanoscale Horiz., 2020, 5, 182 [28] Zhang Y., Pan V., Li X., Yang X., Li H., Wang P., Ke Y., Small, 2019, 15, 1900228 [29] Zhang D. Y., Seelig G., Nat. Chem., 2011, 3, 103 [30] Xiong M., Liu Q., Tang D., Liu L., Kong G., Fu X., Yang C., Lyu Y., Meng H. M., Ke G., Zhang X. B., ACS Appl. Bio. Mater., 2020, 3, 2723 [31] Tatsumi K., Ohashi K., Teramura Y., Utoh R., Kanegae K., Watanabe N., Mukobata S., Nakayama M., Iwata H., Okano T., Biomaterials, 2012, 33, 821 [32] Lin M., Chen Y., Zhao S., Tang R., Nie Z., Xing H., Angew. Chem. Int. Ed., 2022, 61, e202111647 [33] Bailey R. C., Kwong G. A., Radu C. G., Witte O. N., Heath J. R., J. Am. Chem. Soc., 2007, 129, 1959 [34] Zhu G., Zhang S., Song E., Zheng J., Hu R., Fang X., Tan W., Angew. Chem. Int. Ed., 2013, 52, 5490 [35] Li L., Chen X., Cui C., Pan X., Li X., Yazd H. S., Wu Q., Qiu L., Li J., Tan W., J. Am. Chem. Soc., 2019, 141, 17174 [36] Fan J., Wang H.H., Xie S., Wang M., Nie Z., ChembioChem, 2020, 21, 282 [37] Porte K., Riomet M., Figliola C., Audisio D., Taran F., Chem. Rev., 2021, 121, 6718 [38] Baskin J. M., Prescher J. A., Laughlin S. T., Agard N. J., Chang P. V., Miller I. A., Lo A., Codelli J. A., Bertozzi C. R., Proc. Natl. Acad. Sci. USA, 2007, 104, 16793 [39] Saxon E., Bertozzi C. R., Science, 2000, 287, 2007 [40] Yeagle P. L., FASEB J., 1989, 3, 1833 [41] Harayama T., Riezman H., Nat. Rev. Mol. Cell Biol., 2018, 19, 281 [42] Lombard J., Biol. Direct, 2014, 9, 32 [43] Hedin L. E., Illergård K., Elofsson A., J. Proteome Res., 2011, 10, 3324 [44] Grimm D., Bauer J., Pietsch J., Infanger M., Eucker J., Eilles C., Schoenberger J., Curr. Med. Chem., 2011, 18, 176 [45] Robertson J., Peters M. J., McInnes I. B., Sattar N., Nat. Rev. Rheumatol., 2013, 9, 513 [46] Krishnan S., Nambiar M. P., Warke V. G., Fisher C. U., Mitchell J., Delaney N., Tsokos G. C., J. Immunol., 2004, 172, 7821 [47] You M., Lyu Y., Han D., Qiu L., Liu Q., Chen T., Sam Wu C., Peng L., Zhang L., Bao G., Tan W., Nat. Nanotechnol., 2017, 12, 453 [48] Bagheri Y., Chedid S., Shafiei F., Zhao B., You M., Chem. Sci., 2019, 10, 11030 [49] Bagheri Y., Ali A. A., Keshri P., Chambers J., Gershenson A., You M., Angew. Chem. Int. Ed., 2022, 61, e202112033 [50] Ali A. A., Bagheri Y., Tian Q., You M., Nano Lett., 2022, 22, 7579 [51] Saminathan A., Devany J., Veetil A. T., Suresh B., Pillai K.S., Schwake M., Krishnan Y., Nat. Nanotechnol., 2021, 16, 96 [52] Zheng H., Li H., Li M., Zhai T., Xie X., Li C., Jing X., Liang C., Li Q., Zuo X., Li J., Fan J., Shen J., Peng X., Fan C., Angew. Chem. Int. Ed., 2023, 62, e202305896 [53] Wang Y., Zhang Y., Ju H., Liu Y., Chemistry, 2023, 5, 2182 [54] Qiu L., Zhang T., Jiang J., Wu C., Zhu G., You M., Chen X., Zhang L., Cui C., Yu R., Tan W., J. Am. Chem. Soc., 2014, 136, 13090 [55] Zeng S., Liu D., Li C., Yu F., Fan L., Lei C., Huang Y., Nie Z., Yao S., Anal. Chem., 2018, 90, 13459 [56] Tokunaga T., Namiki S., Yamada K., Imaishi T., Nonaka H., Hirose K., Sando S., J. Am. Chem. Soc., 2012, 134, 9561 [57] Feng G., Luo X., Lu X., Xie S., Deng L., Kang W., He F., Zhang J., Lei C., Lin B., Huang Y., Nie Z., Yao S., Angew. Chem. Int. Ed., 2019, 58, 6590 [58] Zeng S., Wang S., Xie X., Yang S. H., Fan J. H., Nie Z., Huang Y., Wang H. H., Anal. Chem., 2020, 92, 15194 [59] Zhao D., Chang D., Zhang Q., Chang Y., Liu B., Sun C., Li Z., Dong C., Liu M., Li Y., J. Am. Chem. Soc., 2021, 143, 15084 [60] Zheng J., Wang Q., Shi L., Peng P., Shi L., Li T., Angew. Chem. Int. Ed., 2021, 60, 20858 [61] Qiu L., Wimmers F., Weiden J., Heus H. A., Tel J., Figdor C. G., Chem. Commun. (Camb), 2017, 53, 8066 [62] Chen S., Xu Z., Li S., Liang H., Zhang C., Wang Z., Li J., Li J., Yang H., Angew. Chem. Int. Ed., 2022, 61, e202113795 [63] Bi S., Chen W., Fang Y., Wang Y., Zhang Q., Guo H., Ju H., Liu Y., J. Am. Chem. Soc., 2023, 145, 5041 [64] Hubbard S. R., Miller W. T., Curr. Opin. Cell Biol., 2007, 19, 117 [65] Liang H., Chen S., Li P., Wang L., Li J., Li J., Yang H.-H., Tan W., J. Am. Chem. Soc., 2018, 140, 4186 [66] Yang W., Nan H., Xu Z., Huang Z., Chen S., Li J., Li J., Yang H., Anal. Chem., 2021, 93, 12265 [67] Li Y., Zhang X., Pan W., Li N., Tang B., Anal. Chem., 2020, 92, 11921 [68] Bi S., Yue S., Zhang S., Chem. Soc. Rev., 2017, 46, 4281 [69] Wang L., Li W., Sun J., Zhang S.-Y., Yang S., Li J., Li J., Yang H.-H., Anal. Chem., 2018, 90, 14433 [70] Wang Z., Xie X., Jin K., Xia D., Zhu J., Zhang J., Adv. Healthc. Mater., 2024, e2303398 [71] Xu L., Zhou Z., Gou X., Shi W., Gong Y., Yi M., Cheng W., Song F., Biosens. Bioelectron., 2021, 179, 113064 [72] Wang J., Song J., Zhang X., Wang S. M., Kang B., Li X. L., Chen H. Y., Xu J. J., J. Am. Chem. Soc., 2023, 145, 1273 [73] Dong C., Fang X., Xiong J., Zhang J., Gan H., Song C., Wang L., ACS Nano, 2022, 16, 14055 [74] Peng R., Zheng X., Lyu Y., Xu L., Zhang X., Ke G., Liu Q., You C., Huan S., Tan W., J. Am. Chem. Soc., 2018, 140, 9793 [75] Chang X., Zhang C., Lv C., Sun Y., Zhang M., Zhao Y., Yang L., Han D., Tan W., J. Am. Chem. Soc., 2019, 141, 12738 [76] Gao Q., Zhao Y., Xu K., Zhang C., Ma Q., Qi L., Chao D., Zheng T., Yang L., Miao Y., Han D., Angew. Chem. Int. Ed., 2020, 59, 23564 [77] Wang D., Li S., Zhao Z., Zhang X., Tan W., Angew. Chem. Int. Ed., 2021, 60, 15816 [78] Yin Y., Xie W., Xiong M., Gao Y., Liu Q., Han D., Ke G., Zhang X. B., Angew. Chem. Int. Ed., 2023, 62, e202309837 |
[1] | WU Jun, LI Yongzhi, QIN Hanjiao, GAO Ying, YANG Bing, SHENG Jiyao, ZHANG Xuewen. Strategy for Detecting Systemic Treatment Sensitivity of Primary Liver Cancer Based on a Novel Infrared-emissive Organic Nanoparticle [J]. Chemical Research in Chinese Universities, 2024, 40(1): 145-152. |
[2] | WANG Youjuan, YE Zhifei, SONG Guosheng, LIU Zhuang. Magnetic-Optical Imaging for Monitoring Chemodynamic Therapy [J]. Chemical Research in Chinese Universities, 2022, 38(2): 481-492. |
[3] | WU Liting, XIN Yujia, GUO Zhaoyang, GAO Wei, ZHU Yanpeng, br, WANG Yinsong, RAN Ruixue, YANG Xiaoying. Cell Membrane-camouflaged Multi-functional Dendritic Large Pore Mesoporous Silica Nanoparticles for Combined Photothermal Therapy and Radiotherapy of Cancer [J]. Chemical Research in Chinese Universities, 2022, 38(2): 562-571. |
[4] | XU Haijiao, WANG Hongda. Conventional Molecular and Novel Structural Mechanistic Insights into Orderly Organelle Interactions [J]. Chemical Research in Chinese Universities, 2021, 37(4): 829-839. |
[5] | SONG Nan, XIAO Peihong, MA Ke, KANG Miaomiao, ZHU Wei, HUANG Jiachang, WANG Dong, TANG Ben Zhong. Recent Advances of AIEgens for Targeted Imaging of Subcellular Organelles [J]. Chemical Research in Chinese Universities, 2021, 37(1): 52-65. |
[6] | YANG Linlin, MIAO Yanyan, HAN Da. DNA Nanotechnology on Live Cell Membranes [J]. Chemical Research in Chinese Universities, 2020, 36(2): 203-210. |
[7] | LI Yanyan, YIN Lei, LI Yanhua, SUN Zhihui, ZHAO Xiaojun, GAO Mingyue, WANG Hongliang. Therapeutic Drug Monitoring of Vancomycin and Voriconazole by Liquid Chromatography-Tandem Mass Spectrometric Method [J]. Chemical Research in Chinese Universities, 2017, 33(3): 339-342. |
[8] | KANG Meng, ZOU Xue, LU Yan, WANG Hongmei, SHEN Chengyin, JIANG Haihe, CHU Yannan. Application of a Self-developed Proton Transfer Reaction-Mass Spectrometer to On-line Monitoring Trace Volatile Organic Compounds in Ambient Air [J]. Chemical Research in Chinese Universities, 2016, 32(4): 565-569. |
[9] | WANG Dong, LIU Xiaomeng, FANG Zhenxing, LI Jian, SUN Mojie. Preparation of Sulfur-doped PANI/TiO2 Nanowires and Its Sensing Properties to Mercury [J]. Chemical Research in Chinese Universities, 2015, 31(4): 581-584. |
[10] | LIU Chunyu, WANG Shaoyan, FU Cuicui, LI Haibo, XU Shuping, XU Weiqing. Preparation of Surface-enhanced Raman Scattering(SERS)-active Optical Fiber Sensor by Laser-induced Ag Deposition and Its Application in Bioidentification of Biotin/Avidin [J]. Chemical Research in Chinese Universities, 2015, 31(1): 25-30. |
[11] | WANG Wen-wen, GAO Fu-kai, LI Gui-zhi, LIU Zhen-bo, LIU Yong-ming. High Efficient Extraction of Phthalates in Aquatic Products by a Modified QuEChERS Method [J]. Chemical Research in Chinese Universities, 2013, 29(4): 653-656. |
[12] | LIU Bin, YANG Xiao-hai, WANG Ke-min, TAN Wei-hong. Real-time Monitoring of Nucleotide Excision of Molecular Beacon Catalyzed by Klenow Fragment [J]. Chemical Research in Chinese Universities, 2012, 28(1): 37-40. |
[13] | LIU Jian-wen*, LI Xin-hai, WANG Zhi-xing, GUO Hua-jun and HU Qi-yang. Preparation and Characterization of Phosphorus Pentafluoride Gas for Lithium Ion Battery Electrolyte Salt [J]. Chemical Research in Chinese Universities, 2009, 25(6): 791-795. |
[14] | YAN Li, ZHOU Xi-chun . Quartz Crystal Microbalance Sensor Deposited with LB Films of Functional Polymers for the Detection of Phenols in Vapour Phase [J]. Chemical Research in Chinese Universities, 1998, 14(4): 433-437. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||