Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2): 382-395.doi: 10.1007/s40242-022-2010-4
• Reviews • Previous Articles Next Articles
BI Shuai, MENG Fancheng, ZHANG Zixing, WU Dongqing, ZHANG Fan
Received:
2022-01-05
Revised:
2022-02-16
Online:
2022-04-01
Published:
2022-05-18
Contact:
ZHANG Fan
E-mail:fan-zhang@sjtu.edu.cn
Supported by:
BI Shuai, MENG Fancheng, ZHANG Zixing, WU Dongqing, ZHANG Fan. Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked π-Conjugated Motifs[J]. Chemical Research in Chinese Universities, 2022, 38(2): 382-395.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Diercks C. S., Yaghi O. M., Science, 2017, 355, eaal1585. [2] Wang H., Zeng Z., Xu P., Li L., Zeng G., Xiao R., Tang Z., Huang D., Tang L., Lai C., Jiang D., Liu Y., Yi H., Qin L., Ye S., Ren X., Tang W., Chem. Soc. Rev., 2019, 48, 488. [3] Liu Y., Zhou W., Teo W. L., Wang K., Zhang L., Zeng Y., Zhao Y., Chem., 2020, 6, 3172. [4] Wang Z., Zhang S., Chen Y., Zhang Z., Ma S., Chem. Soc. Rev., 2020, 49, 708. [5] Yuan S., Li X., Zhu J., Zhang G., Van Puyvelde P., Van der Bruggen B., Chem. Soc. Rev., 2019, 48, 2665. [6] Ding S.-Y., Wang W., Chem. Soc. Rev., 2013, 42, 548. [7] Sharma R. K., Yadav P., Yadav M., Gupta R., Rana P., Srivastava A., Zbořil R., Varma R. S., Antonietti M., Gawande M. B., Mater. Horiz., 2020, 7, 411. [8] Haug W. K., Moscarello E. M., Wolfson E. R., McGrier P. L., Chem. Soc. Rev., 2020, 49, 839. [9] Meng Z., Mirica K. A., Chem. Soc. Rev., 2021, 50, 13498. [10] Li J., Jing X., Li Q., Li S., Gao X., Feng X., Wang B., Chem. Soc. Rev., 2020, 49, 3565. [11] Chen X., Geng K., Liu R., Tan K. T., Gong Y., Li Z., Tao S., Jiang Q., Jiang D., Angew. Chem., Int. Ed., 2020, 59, 5050. [12] Wang D.-G., Qiu T., Guo W., Liang Z., Tabassum H., Xia D., Zou R., Energy Environ. Sci., 2021, 14, 688. [13] Lin C.-Y., Zhang D., Zhao Z., Xia Z., Adv. Mater., 2018, 30, 1703646. [14] Feng X., Ding X., Jiang D., Chem. Soc. Rev., 2012, 41, 6010. [15] Zhao X., Pachfule P., Thomas A., Chem. Soc. Rev., 2021, 50, 6871. [16] Côté A. P., Benin A. I., Ockwig N. W., O'Keeffe M., Matzger A. J., Yaghi O. M., Science, 2005, 310, 1166. [17] Haase F., Lotsch B. V., Chem. Soc. Rev., 2020, 49, 8469. [18] Liu R., Tan K. T., Gong Y., Chen Y., Li Z., Xie S., He T., Lu Z., Yang H., Jiang D., Chem. Soc. Rev., 2021, 50, 120. [19] Liang R.-R., Jiang S.-Y., A R.-H., Zhao X., Chem. Soc. Rev., 2020, 49, 3920. [20] Li X., Yadav P., Loh K. P., Chem. Soc. Rev., 2020, 49, 4835. [21] Guan X., Chen F., Fang Q., Qiu S., Chem. Soc. Rev., 2020, 49, 1357. [22] Han X., Yuan C., Hou B., Liu L., Li H., Liu Y., Cui Y., Chem. Soc. Rev., 2020, 49, 6248. [23] Jin Y., Hu Y., Ortiz M., Huang S., Ge Y., Zhang W., Chem. Soc. Rev., 2020, 49, 4637. [24] Lyle S. J., Waller P. J., Yaghi O. M., Trends Chem., 2019, 1, 172. [25] Diercks C. S., Kalmutzki M. J., Yaghi O. M., Molecules, 2017, 22. [26] Jackson K. T., Reich T. E., El-Kaderi H. M., Chem. Commun., 2012, 48, 8823. [27] Roeser J., Prill D., Bojdys M. J., Fayon P., Trewin A., Fitch A. N., Schmidt M. U., Thomas A., Nat. Chem., 2017, 9, 977. [28] Hunt J. R., Doonan C. J., LeVangie J. D., Côté A. P., Yaghi O. M., J. Am. Chem. Soc., 2008, 130, 11872. [29] Li Y., Chen W., Xing G., Jiang D., Chen L., Chem. Soc. Rev., 2020, 49, 2852. [30] Geng K., He T., Liu R., Dalapati S., Tan K. T., Li Z., Tao S., Gong Y., Jiang Q., Jiang D., Chem. Rev., 2020, 120, 8814. [31] Uribe-Romo F. J., Hunt J. R., Furukawa H., Klöck C., O'Keeffe M., Yaghi O. M., J. Am. Chem. Soc., 2009, 131, 4570. [32] Rodríguez-San-Miguel D., Montoro C., Zamora F., Chem. Soc. Rev., 2020, 49, 2291. [33] Segura J. L., Royuela S., Mar Ramos M., Chem. Soc. Rev., 2019, 48, 3903. [34] Wei P.-F., Qi M.-Z., Wang Z.-P., Ding S.-Y., Yu W., Liu Q., Wang L.-K., Wang H.-Z., An W.-K., Wang W., J. Am. Chem. Soc., 2018, 140, 4623. [35] Seo J.-M., Noh H.-J., Jeong H. Y., Baek J.-B., J. Am. Chem. Soc., 2019, 141, 11786. [36] Waller P. J., AlFaraj Y. S., Diercks C. S., Jarenwattananon N. N., Yaghi O. M., J. Am. Chem. Soc., 2018, 140, 9099. [37] Haase F., Troschke E., Savasci G., Banerjee T., Duppel V., Dörfler S., Grundei M. M. J., Burow A. M., Ochsenfeld C., Kaskel S., Lotsch B. V., Nat. Commun., 2018, 9, 2600. [38] Zhuang X., Zhao W., Zhang F., Cao Y., Liu F., Bi S., Feng X., Polym. Chem., 2016, 7, 4176. [39] Guan X., Li H., Ma Y., Xue M., Fang Q., Yan Y., Valtchev V., Qiu S., Nat. Chem., 2019, 11, 587. [40] Guo J., Xu Y., Jin S., Chen L., Kaji T., Honsho Y., Addicoat M. A., Kim J., Saeki A., Ihee H., Seki S., Irle S., Hiramoto M., Gao J., Jiang D., Nat. Commun., 2013, 4, 2736. [41] Zhang B., Wei M., Mao H., Pei X., Alshmimri S. A., Reimer J. A., Yaghi O. M., J. Am. Chem. Soc.,2018, 140, 12715. [42] Wang P.-L., Ding S.-Y., Zhang Z.-C., Wang Z.-P., Wang W., J. Am. Chem. Soc., 2019, 141, 18004. [43] Banerjee T., Gottschling K., Savasci G., Ochsenfeld C., Lotsch B. V., ACS Energy Lett., 2018, 3, 400. [44] Wang H., Wang H., Wang Z., Tang L., Zeng G., Xu P., Chen M., Xiong T., Zhou C., Li X., Huang D., Zhu Y., Wang Z., Tang J., Chem. Soc. Rev., 2020, 49, 4135. [45] Wang W., Zhao W., Xu H., Liu S., Huang W., Zhao Q., Coord. Chem. Rev., 2021, 429, 213616. [46] Wang L., Zeng C., Xu H., Yin P., Chen D., Deng J., Li M., Zheng N., Gu C., Ma Y., Chem Sci., 2019, 10, 1023. [47] Keller N., Bein T., Chem. Soc. Rev., 2021, 50, 1813. [48] [48] Khattak A. M., Ghazi Z. A., Liang B., Khan N. A., Iqbal A., Li L., Tang Z., J. Mater. Chem. A, 2016, 4, 16312. [49] Xu S., Wang G., Biswal B. P., Addicoat M., Paasch S., Sheng W., Zhuang X., Brunner E., Heine T., Berger R., Feng X., Angew. Chem., Int. Ed., 2019, 58, 849. [50] Gu R., Flidrova K., Lehn J.-M., J. Am. Chem. Soc., 2018, 140, 5560. [51] König N. F., Mutruc D., Hecht S., J. Am. Chem. Soc., 2021, 143, 9162. [52] Bi S., Yang C., Zhang W., Xu J., Liu L., Wu D., Wang X., Han Y., Liang Q., Zhang F., Nat. Commun.,2019, 10, 2467. [53] Bi S., Lu C., Zhang W., Qiu F., Zhang F., J. Energy Chem., 2018, 27, 99. [54] Li X., Mater. Chem. Front., 2021, 5, 2931. [55] He T., Geng K., Jiang D., Trends Chem., 2021, 3, 431. [56] Xu S., Richter M., Feng X., Acc. Mater. Res., 2021, 2, 252. [57] Alahakoon S. B., Diwakara S. D., Thompson C. M., Smaldone R. A., Chem. Soc. Rev., 2020, 49, 1344. [58] Springer M. A., Liu T.-J., Kuc A., Heine T., Chem. Soc. Rev., 2020, 49, 2007. [59] Knoevenagel E., Justus Liebigs Ann. Chem., 1894, 281, 25. [60] Hann A. C. O., Lapworth A., J. Chem. Soc., Trans., 1904, 85, 46. [61] Cope A. C., J. Am. Chem. Soc., 1937, 59, 2327. [62] Boucard V., Macromolecules, 2001, 34, 4308. [63] Mase N., Horibe T., Org. Lett., 2013, 15, 1854. [64] Zacuto M. J., J. Org. Chem., 2019, 84, 6465. [65] Mukaiyama T., Org. React., 1982, 28, 203. [66] Heathcock C. H.; Eds.:Trost B. M., Fleming I., Comprehensive Organic Synthesis Pergamon, Oxford, 1991, 133. [67] Pastoetter D. L., Xu S., Borrelli M., Addicoat M., Biswal B. P., Paasch S., Dianat A., Thomas H., Berger R., Reineke S., Brunner E., Cuniberti G., Richter M., Feng X., Angew. Chem. Int. Ed., 2020, 59, 23620. [68] He Y., Ma W., Yang N., Liu F., Chen Y., Liu H., Zhu X., Chem. Commun., 2021, 57, 7557. [69] Jin E., Asada M., Xu Q., Dalapati S., Addicoat M. A., Brady M. A., Xu H., Nakamura T., Heine T., Chen Q., Jiang D., Science, 2017, 357, 673. [70] Jin E., Li J., Geng K., Jiang Q., Xu H., Xu Q., Jiang D., Nat. Commun., 2018, 9, 4143. [71] Zhang Q., Dai M., Shao H., Tian Z., Lin Y., Chen L., Zeng X. C., ACS Appl. Mater. Interfaces, 2018, 10, 43595. [72] Jin E., Lan Z., Jiang Q., Geng K., Li G., Wang X., Jiang D., Chem., 2019, 5, 1632. [73] Becker D., Biswal B. P., Kaleńczuk P., Chandrasekhar N., Giebeler L., Addicoat M., Paasch S., Brunner E., Leo K., Dianat A., Cuniberti G., Berger R., Feng X., Chem.-Eur. J., 2019, 25, 6562. [74] Zhao Y., Liu H., Wu C., Zhang Z., Pan Q., Hu F., Wang R., Li P., Huang X., Li Z., Angew. Chem., Int. Ed., 2019, 58, 5376. [75] Chen R., Shi J.-L., Ma Y., Lin G., Lang X., Wang C., Angew. Chem., Int. Ed., 2019, 58, 6430. [76] Jin E., Geng K., Lee K. H., Jiang W., Li J., Jiang Q., Irle S., Jiang D., Angew. Chem. Int. Ed., 2020, 59, 12162. [77] Shi J.-L., Chen R., Hao H., Wang C., Lang X., Angew. Chem. Int. Ed., 2020, 59, 9088. [78] Mo C., Yang M., Sun F., Jian J., Zhong L., Fang Z., Feng J., Yu D., Adv. Sci., 2020, 7, 1902988. [79] Xu S., Sun H., Addicoat M., Biswal B. P., He F., Park S., Paasch S., Zhang T., Sheng W., Brunner E., Hou Y., Richter M., Feng X., Adv. Mater., 2020, 33, 2006274. [80] Cui W.-R., Li F.-F., Xu R.-H., Zhang C.-R., Chen X.-R., Yan R.-H., Liang R.-P., Qiu J.-D., Angew. Chem., Int. Ed., 2020, 59, 17684. [81] Xu S., Li Y., Biswal B. P., Addicoat M. A., Paasch S., Imbrasas P., Park S., Shi H., Brunner E., Richter M., Lenk S., Reineke S., Feng X., Chem. Mater., 2020, 32, 7985. [82] Fu Z., Wang X., Gardner A. M., Wang X., Chong S. Y., Neri G., Cowan A. J., Liu L., Li X., Vogel A., Clowes R., Bilton M., Chen L., Sprick R. S., Cooper A. I., Chem. Sci., 2020, 11, 543. [83] Yuan C., Fu S., Yang K., Hou B., Liu Y., Jiang J., Cui Y., J. Am. Chem. Soc., 2020, 143, 369. [84] Cui W.-R., Zhang C.-R., Jiang W., Li F.-F., Liang R.-P., Liu J., Qiu J.-D., Nat. Commun., 2020, 11, 436. [85] Bu R., Zhang L., Liu X.-Y., Yang S.-L., Li G., Gao E.-Q., ACS Appl. Mater. Interfaces, 2021, 13, 26431. [86] Su Y., Wan Y., Xu H., Otake K.-i., Tang X., Huang L., Kitagawa S., Gu C., J. Am. Chem. Soc., 2020, 142, 13316. [87] Wang Y., Hao W., Liu H., Chen R., Pan Q., Li Z., Zhao Y., Nat. Commun., 2022, 13, 100. [88] Jin E., Geng K., Fu S., Addicoat M. A., Zheng W., Xie S., Hu J.-S., Hou X., Wu X., Jiang Q., Xu Q.-H., Wang H. I., Jiang D., Angew. Chem., Int. Ed., 2021, 61, e202115020. [89] Burroughes J. H., Bradley D. D. C., Brown A. R., Marks R. N., Mackay K., Friend R. H., Burns P. L., Holmes A. B., Nature, 1990, 347, 539. [90] Greenham N. C., Moratti S. C., Bradley D. D. C., Friend R. H., Holmes A. B., Nature, 1993, 365, 628. [91] Friend R. H., Gymer R. W., Holmes A. B., Burroughes J. H., Marks R. N., Taliani C., Bradley D. D. C., Santos D. A. D., Brédas J. L., Lögdlund M., Salaneck W. R., Nature, 1999, 397, 121. [92] Grimsdale A. C., Leok Chan K., Martin R. E., Jokisz P. G., Holmes A. B., Chem. Rev., 2009, 109, 897. [93] Bi S., Thiruvengadam P., Wei S., Zhang W., Zhang F., Gao L., Xu J., Wu D., Chen J.-S., Zhang F., J. Am. Chem. Soc., 2020, 142, 11893. [94] Xu J., Yang C., Bi S., Wang W., He Y., Wu D., Liang Q., Wang X., Zhang F., Angew. Chem., Int. Ed., 2020, 59, 23845. [95] Cui W.-R., Zhang C.-R., Xu R.-H., Chen X.-R., Yan R.-H., Jiang W., Liang R.-P., Qiu J.-D., ACS EST Water, 2021, 1, 440. [96] Attias A.-J., Cavalli C., Donnio B., Guillon D., Hapiot P., Malthête J., Chem. Mater., 2002, 14, 375. [97] Wang H., Li Z., Shao P., Liang Y., Wang H., Qin J., Gong Q., New J. Chem., 2005, 29, 792. [98] Xu J., He Y., Bi S., Wang M., Yang P., Wu D., Wang J., Zhang F., Angew. Chem. Int. Ed., 2019, 58, 12065. [99] Li Y.-J., Cui W.-R., Jiang Q.-Q., Wu Q., Liang R.-P., Luo Q.-X., Qiu J.-D., Nat. Commun., 2021, 12, 4735. [100] Cui Y. Z., Fang Q., Lei H., Xue G., Yu W. T., Chem. Phys. Lett., 2003, 377, 507. [101] Lyu H., Diercks C. S., Zhu C., Yaghi O. M., J. Am. Chem. Soc., 2019, 141, 6848. [102] Wei S., Zhang W., Qiang P., Yu K., Fu X., Wu D., Bi S., Zhang F., J. Am. Chem. Soc., 2019, 141, 14272. [103] Acharjya A., Longworth-Dunbar L., Roeser J., Pachfule P., Thomas A., J. Am. Chem. Soc., 2020, 142, 14033. [104] Acharjya A., Pachfule P., Roeser J., Schmitt F.-J., Thomas A., Angew. Chem., Int. Ed., 2019, 58, 14865. [105] Jadhav T., Fang Y., Liu C.-H., Dadvand A., Hamzehpoor E., Patterson W., Jonderian A., Stein R. S., Perepichka D. F., J. Am. Chem. Soc., 2020, 142, 8862. [106] Jadhav T., Fang Y., Patterson W., Liu C.-H., Hamzehpoor E., Perepichka D. F., Angew. Chem., Int. Ed., 2019, 58, 13753. [107] Yang S., Streater D., Fiankor C., Zhang J., Huang J., J. Am. Chem. Soc., 2021, 143, 1061. [108] Wang Z., Yang Y., Zhao Z., Zhang P., Zhang Y., Liu J., Ma S., Cheng P., Chen Y., Zhang Z., Nat. Commun., 2021, 12, 1982. [109] Sowmiah S., Esperança J. M. S. S., Rebelo L. P. N., Afonso C. A. M., Org. Chem. Front., 2018, 5, 453. [110] Namboodiri C. K. R., Bisht P. B., Mukkamala R., Chandra B., Aidhen I. S., Chem. Phys., 2013, 415, 190. [111] He F.-S., Ye S., Wu J., ACS Catal., 2019, 9, 8943. [112] Li Y., Wang H., Li X., Chem. Sci., 2020, 11, 12249. [113] Xu X., Qiu W., Zhou Q., Tang J., Yang F., Sun Z., Audebert P., J. Phys. Chem. B, 2008, 112, 4913. [114] Rudat B., Birtalan E., Thomé I., Kölmel D. K., Horhoiu V. L., Wissert M. D., Lemmer U., Eisler H.-J., Balaban T. S., Bräse S., J. Phys. Chem. B, 2010, 114, 13473. [115] Lin J., Bi S., Fan Z., Fu Z., Meng Z., Hou Z., Zhang F., Polym. Chem., 2021, 12, 1661. [116] Meng F., Bi S., Sun Z., Jiang B., Wu D., Chen J.-S., Zhang F., Angew. Chem., Int. Ed, 2021, 60, 13614. [117] Bi S., Zhang Z., Meng F., Wu D., Chen J.-S., Zhang F., Angew. Chem., Int. Ed., 2021, 61, e202111627. [118] Hu H., Yan Q., Ge R., Gao Y., Chinese J. Catal., 2018, 39, 1167. [119] Yusran Y., Li H., Guan X., Fang Q., Qiu S., EnergyChem, 2020, 2, 100035. [120] Liu J., Wang N., Ma L., Chem. Asian J., 2020, 15, 338. [121] Zhi Y., Wang Z., Zhang H.-L., Zhang Q., Small, 2020, 16, 2001070. [122] Yu K., Bi S., Ming W., Wei W., Zhang Y., Xu J., Qiang P., Qiu F., Wu D., Zhang F., Polym. Chem., 2019, 10, 3758. [123] Ming W., Bi S., Zhang Y., Yu K., Lu C., Fu X., Qiu F., Liu P., Su Y., Zhang F., Adv. Funct. Mater., 2019, 29, 1808423. [124] Wang X., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J. M., Domen K., Antonietti M., Nat. Mater., 2009, 8, 76. [125] Stegbauer L., Schwinghammer K., Lotsch B. V., Chem. Sci., 2014, 5, 2789. [126] Vyas V. S., Haase F., Stegbauer L., Savasci G., Podjaski F., Ochsenfeld C., Lotsch B. V., Nat. Commun., 2015, 6, 8508. [127] Pachfule P., Acharjya A., Roeser J., Langenhahn T., Schwarze M., Schomäcker R., Thomas A., Schmidt J., J. Am. Chem. Soc., 2018, 140, 1423. [128] Bi S., Lan Z. A., Paasch S., Zhang W., He Y., Zhang C., Liu F., Wu D., Zhuang X., Brunner E., Wang X., Zhang F., Adv. Funct. Mater., 2017, 27, 1703146. [129] Jin E., Fu S., Hanayama H., Addicoat M. A., Wei W., Chen Q., Graf R., Landfester K., Bonn M., Zhang K. A. I., Wang H. I., Müllen K., Narita A., Angew. Chem., Int. Ed., 2021, 61, e202114059. [130] Zhai L., Yang S., Yang X., Ye W., Wang J., Chen W., Guo Y., Mi L., Wu Z., Soutis C., Xu Q., Jiang Z., Chem. Mater., 2020, 32, 9747. [131] Zhang F., Wei S., Wei W., Zou J., Gu G., Wu D., Bi S., Zhang F., Sci. Bull., 2020, 65, 1659. [132] Zhang G., Hong Y.-L., Nishiyama Y., Bai S., Kitagawa S., Horike S., J. Am. Chem. Soc., 2019, 141, 1227. [133] Fujie K., Otsubo K., Ikeda R., Yamada T., Kitagawa H., Chem. Sci., 2015, 6, 4306. [134] Hu Y., Dunlap N., Wan S., Lu S., Huang S., Sellinger I., Ortiz M., Jin Y., Lee S.-H., Zhang W., J. Am. Chem. Soc., 2019, 141, 7518. [135] Jeong K., Park S., Jung G. Y., Kim S. H., Lee Y.-H., Kwak S. K., Lee S.-Y., J. Am. Chem. Soc., 2019, 141, 5880. [136] Xu Q., Tao S., Jiang Q., Jiang D., J. Am. Chem. Soc., 2018, 140, 7429. [137] Li Z., Liu Z.-W., Mu Z.-J., Cao C., Li Z., Wang T.-X., Li Y., Ding X., Han B.-H., Feng W., Mater. Chem. Front., 2020, 4, 1164. |
[1] | WANG Guangbo, XIE Kehui, ZHU Fucheng, KAN Jinglan, LI Sha, GENG Yan, DONG Yubin. Construction of Tetrathiafulvalene-based Covalent Organic Frameworks for Superior Iodine Capture [J]. Chemical Research in Chinese Universities, 2022, 38(2): 409-414. |
[2] | LI Jiali, ZHANG Zhenwei, JIA Ji, LIU Xiaoming. Covalent Organic Frameworks for Photocatalytic Organic Transformation [J]. Chemical Research in Chinese Universities, 2022, 38(2): 275-289. |
[3] | DI Zhengyi, MAO Yining, YUAN Heng, ZHOU Yan, JIN Jun, LI Cheng-Peng. Covalent Organic Frameworks(COFs) for Sequestration of99TcO4– [J]. Chemical Research in Chinese Universities, 2022, 38(2): 290-295. |
[4] | XU Kai, HUANG Ning. Recent Advances of Covalent Organic Frameworks in Chemical Sensing [J]. Chemical Research in Chinese Universities, 2022, 38(2): 339-349. |
[5] | CHANG Shunkai, LI Cuiyan, LI Hui, ZHU Liangkui, FANG Qianrong. Stable Thiophene-sulfur Covalent Organic Frameworks for Oxygen Reduction Reaction(ORR) [J]. Chemical Research in Chinese Universities, 2022, 38(2): 396-401. |
[6] | ZHANG Yin, MA Shengqian. Laser-induced Synthesis of Ultrafine Gold Nanoparticles in Covalent Organic Frameworks [J]. Chemical Research in Chinese Universities, 2022, 38(2): 468-471. |
[7] | CUI Yumeng, MIAO Zhuang, LIU Qi, JIN Fenchun, ZHAI Yufeng, ZHANG Lingyan, WANG Wenli, WANG Ke, LIU Guiyan, ZENG Yongfei. Construction of a Three-dimensional Covalent Organic Framework via the Linker Exchange Strategy [J]. Chemical Research in Chinese Universities, 2022, 38(2): 402-408. |
[8] | YU Xiaoming, MA Yunchao, LI Cuiyan, GUAN Xinyu, FANG Qianrong, QIU Shilun. A Nitrogen, Sulfur co-Doped Porphyrin-based Covalent Organic Framework as an Efficient Catalyst for Oxygen Reduction [J]. Chemical Research in Chinese Universities, 2022, 38(1): 167-172. |
[9] | YE Peng, LIU Yongchao, MA Jian, WANG Yueda, FENG Xuyong, XIANG Hongfa, SUN Yi, LIANG Xin, YU Yan. Enhanced Electrochemical Performance of Na0.67Fe0.5Mn0.5O2Cathode with SnO2 Modification [J]. Chemical Research in Chinese Universities, 2021, 37(5): 1130-1136. |
[10] | CAO Wenhao, WANG Caifeng, WANG Shuai, ZHANG Yang, ZHAO Ruisheng. Preparation of Photoresponsive PAN-NH2@EPESP Fiber Films with Mechanical Stability for Regulating Wettability and Micro-environment Humidity [J]. Chemical Research in Chinese Universities, 2021, 37(3): 512-521. |
[11] | WANG Huanfeng, LI Jingjing, LI Fei, GUAN Dehui, WANG Xiaoxue, SU Wenhua, XU Jijing. Strategies with Functional Materials in Tackling Instability Challenges of Non-aqueous Lithium-Oxygen Batteries [J]. Chemical Research in Chinese Universities, 2021, 37(2): 232-245. |
[12] | LIN Qingjin, LIN Chenlu, LIU Jingying, LIU Shuang, XU Haidi, CHEN Yaoqiang, DAN Yi. Optimization of Hybrid Crystal with SAPO-5/34 on Hydrothermal Stability for deNOx Reaction by NH3 [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1249-1254. |
[13] | QU Huiqi, PAN Longhai, SUN Yuexin, WANG Lei, LI Yanyan, ZHANG Mingjuan, ZHANG Zhaoxiang, LIN Haifeng. Supramolecular Assemblies of Three New Metronidazole Derivatives Constructed with Various Dihydroxy-benzoic Acids via Hydrogen Bonds [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1196-1202. |
[14] | CHEN Chaoxian, ZHAO Chenyang, LI Cuihua, LIU Jianhong, GUI Dayong. Porous NiCo2O4 Nanowire Arrays as Supercapacitor Electrode Materials with Extremely High Cycling Stability [J]. Chemical Research in Chinese Universities, 2020, 36(4): 715-720. |
[15] | DENG Mengying, LI Min, MAO Xiuhai, LI Fan, ZUO Xiaolei. Nucleic Acid Nanoprobes for Biosensor Development in Complex Matrices [J]. Chemical Research in Chinese Universities, 2020, 36(2): 185-193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||