Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5): 1151-1162.doi: 10.1007/s40242-022-2219-2
• Reviews • Previous Articles Next Articles
BU Ran1,2, LU Yingying1,2, ZHANG Bing1,2
Received:
2022-06-29
Online:
2022-10-01
Published:
2022-10-08
Contact:
LU Yingying, ZHANG Bing
E-mail:yingyinglu@zju.edu.cn;bzhang219@zju.edu.cn
Supported by:
BU Ran, LU Yingying, ZHANG Bing. Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction[J]. Chemical Research in Chinese Universities, 2022, 38(5): 1151-1162.
[1] Steele B. C., Heinzel A., Nature, 2001, 414, 345 [2] Zhu C., Fu S., Shi Q., Du D., Lin Y., Angew. Chem. Int. Ed.,2017, 56, 13944 [3] Yang D. H., Tao Y., Ding X., Han B. H., Chem. Soc. Rev., 2022,51, 761 [4] Fan L., Xia C., Zhu P., Lu Y., Wang H., Nat. Commun., 2020, 11, 1 [5] Zhao S. Y., Zhang B., Su H., Zhang J. J., Li X. H., Wang K. X., Chen J. S., Wei X., Feng P., J. Mater. Chem. A, 2018, 6, 4331 [6] Cheng F., Chen J., Chem. Soc. Rev., 2012, 41, 2172 [7] Zhang B., Qiu C., Wang S., Gao H., Yu K., Zhang Z., Ling X., Ou W., Su C., Sci. Bull., 2021, 66, 562 [8] Huang B., Li L., Tang X., Zhai W., Hong Y., Hu T., Yuan K., Chen Y., Energy Environ. Sci., 2021, 14, 2789 [9] Shao M. H., Chang Q. W., Dodelet J. P., Chenitz R., Chem. Rev., 2016,116, 3594 [10] Liang Z., Wang H. Y., Zheng H., Zhang W., Cao R., Chem. Soc. Rev., 2021, 50, 2540 [11] Zhou M., Wang H. L., Guo S. J., Chem. Soc. Rev., 2016, 45, 1273 [12] Li Y., Wei B., Zhu M., Chen J., Jiang Q., Yang B., Hou Y., Lei L., Li Z., Zhang R., Lu Y., Adv. Mater., 2021,33, 2102212 [13] Wang A., Li J., Zhang T., Nat. Rev. Chem., 2018, 2, 65 [14] Liu L., Corma A., Chem. Rev.,2018, 118, 4981 [15] Chen Y., Ji S., Chen C., Peng Q., Wang D., Li Y., Joule, 2018, 2, 1242 [16] Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Li J., Zhang T., Nat. Chem., 2011,3, 634 [17] Diercks C. S., Yaghi O. M., Science,2017, 355, aal1585 [18] Geng K., He T., Liu R., Dalapati S., Tan K. T., Li Z., Tao S., Gong Y., Jiang Q., Jiang D., Chem. Rev., 2020,120, 8814 [19] Liu R., Tan K. T., Gong Y., Chen Y., Li Z., Xie S., He T., Lu Z., Yang H., Jiang D., Chem. Soc. Rev.,2021, 50, 120 [20] Freund R., Zaremba O., Arnauts G., Ameloot R., Skorupskii G., Dinca M., Bavykina A., Gascon J., Ejsmont A., Goscianska J., Kalmutzki M., Lachelt U., Ploetz E., Diercks C. S., Wuttke S., Angew. Chem., Int. Ed., 2021, 60, 23975 [21] Cote A. P., Benin A. I., Ockwig N. W., O'Keeffe M., Matzger A. J., Yaghi O. M., Science, 2005, 310, 1166 [22] Liu Y., Wu C., Sun Q., Hu F., Pan Q., Sun J., Jin Y., Li Z., Zhang W., Zhao Y., CCS Chem., 2021, 3, 2418 [23] Wu S., Li M., Phan H., Wang D., Herng T. S., Ding J., Lu Z., Wu J., Angew. Chem., Int. Ed., 2018,57, 8007 [24] Guo J., Lin C.-Y., Xia Z., Xiang Z., Angew. Chem. Int. Ed., 2018, 57, 12567 [25] Royuela S., Martinez-Perinan E., Arrieta M. P., Martinez J. I., Ramos M. M., Zamora F., Lorenzo E., Segura J. L., Chem. Commun., 2020, 56, 1267 [26] Zhang M., Lai C., Xu F., Huang D., Liu S., Fu Y., Li L., Yi H., Qin L., Chen L., Coord. Chem. Rev., 2022,466, 214592 [27] Li J., Jing X., Li Q., Li S., Gao X., Feng X., Wang B., Chem. Soc. Rev., 2020, 49, 3565 [28] Kong L., Zhong M., Shuang W., Xu Y., Bu X. H., Chem. Soc. Rev., 2020, 49, 2378 [29] Zhao X., Pachfule P., Thomas A., Chem. Soc. Rev., 2021, 50, 6871 [30] Li D., Li C., Zhang L., Li H., Zhu L., Yang D., Fang Q., Qiu S., Yao X., J. Am. Chem. Soc., 2020, 142, 8104 [31] Zhao X., Pachfule P., Li S., Langenhahn T., Ye M., Schlesiger C., Praetz S., Schmidt J., Thomas A., J. Am. Chem. Soc., 2019, 141, 6623 [32] Yan S., Guan X., Li H., Li D., Xue M., Yan Y., Valtchev V., Qiu S., Fang Q., J. Am. Chem. Soc.,2019, 141, 2920 [33] Bu R., Zhang L., Gao L. L., Sun W. J., Yang S. L., Gao E. Q., Mol. Catal., 2021, 499, 111319 [34] Sun T., Liang Y., Xu Y., Angew. Chem. Int. Ed., 2021, 61, e202113926 [35] Haase F., Lotsch B. V., Chem. Soc. Rev., 2020, 49, 8469 [36] Zhi Y., Wang Z., Zhang H. L., Zhang Q., Small,2020, 16, e2001070 [37] Li J., Liu P., Mao J., Yan J., Song W., Nanoscale,2022, 16, 6126 [38] Yang Y. L., Wang Y. R., Gao G. K., Liu M., Miao C., Li L. Y., Cheng W., Zhao Z. Y., Chen Y., Xin Z., Li S. L., Li D.-S., Lan Y. Q., Chin. Chem. Lett., 2021, 33, 1439 [39] Wang Y. R., Ding H. M., Ma X. Y., Liu M., Yang Y. L., Chen Y., Li S. L., Lan Y. Q., Angew. Chem. Int. Ed., 2021, 61, e202114648 [40] Feng J., Zhang Y. J., Ma S. H., Yang C., Wang Z. P., Ding S. Y., Li Y., Wang W., J. Am. Chem. Soc.,2022, 144, 6594 [41] Wang Y., Liu H., Pan Q., Wu C., Hao W., Xu J., Chen R., Liu J., Li Z., Zhao Y., J. Am. Chem. Soc.,2020, 142, 5958 [42] Wang K., Jia Z., Bai Y., Wang X., Hodgkiss S. E., Chen L., Chong S. Y., Wang X., Yang H., Xu Y., Feng F., Ward J. W., Cooper A. I., J. Am. Chem. Soc., 2020, 142, 11131 [43] Lu M., Zhang M., Liu C. G., Liu J., Shang L. J., Wang M., Chang J. N., Li S. L., Lan Y. Q., Angew. Chem, Int. Ed., 2021, 60, 4864 [44] Gole B., Stepanenko V., Rager S., Gruene M., Medina D. D., Bein T., Wuerthner F., Beuerle F., Angew. Chem. Int. Ed., 2018, 57, 846 [45] Zhu D., Zhu Y., Yan Q., Barnes M., Liu F., Yu P., Tseng C. P., Tjahjono N., Huang P. C., Rahman M. M., Egap E., Ajayan P. M., Verduzco R., Chem. Mater., 2021, 33, 4216 [46] Martin-Illan J. A., Rodriguez-San-Miguel D., Castillo O., Beobide G., Perez-Carvajal J., Imaz I., Maspoch D., Zamora F., Angew. Chem. Int. Ed., 2021,60, 13969 [47] Karak S., Dey K., Torris A., Halder A., Bera S., Kanheerampockil F., Banerjee R., J. Am. Chem. Soc.,2019, 141, 7572 [48] Karak S., Kandambeth S., Biswal B. P., Sasmal H. S., Kumar S., Pachfule P., Banerjee R., J. Am. Chem. Soc., 2017, 139, 1856 [49] Tao S., Xu H., Xu Q., Hijikata Y., Jiang Q., Irle S., Jiang D., J. Am. Chem. Soc., 2021,143, 8970 [50] Wang X., Shi B., Yang H., Guan J., Liang X., Fan C., You X., Wang Y., Zhang Z., Wu H., Cheng T., Zhang R., Jiang Z., Nat. Commun., 2022, 13, 1020 [51] Liu L., Yin L., Cheng D., Zhao S., Zang H. Y., Zhang N., Zhu G., Angew. Chem. Int. Ed., 2021,60, 14875 [52] Gao H., Neale A. R., Zhu Q., Bahri M., Wang X., Yang H., Xu Y., Clowes R., Browning N. D., Little M. A., Hardwick L. J., Cooper A. I., J. Am. Chem. Soc., 2022,144, 9434 [53] Guo C., Liu M., Gao G. K., Tian X., Zhou J., Dong L. Z., Li Q., Chen Y., Li S. L., Lan Y. Q., Angew. Chem. Int. Ed., 2022, 61, e202113315 [54] Zhao J., Ying Y., Wang G., Hu K., Yuan Y. D., Ye H., Liu Z., Lee J. Y., Zhao D., Energy Storage Mater., 2022,48, 82 [55] Samineni L., Kumar M., Nat. Nanotechnol., 2022, 17, 564 [56] Hou S., Ji W., Chen J., Teng Y., Wen L., Jiang L., Angew. Chem., Int. Ed., 2021,60, 9925 [57] Halder A., Ghosh M., Khayum M A., Bera S., Addicoat M., Sasmal H. S., Karak S., Kurungot S., Banerjee R., J. Am. Chem. Soc., 2018, 140, 10941 [58] Hao Q., Zhao C., Sun B., Lu C., Liu J., Liu M., Wan L. J., Wang D., J. Am. Chem. Soc., 2018,140, 12152 [59] Dey K., Pal M., Rout K. C., Kunjattu H. S., Das A., Mukherjee R., Kharul U. K., Banerjee R., J. Am. Chem. Soc., 2017, 139, 13083 [60] Zhang P., Chen S., Zhu C., Hou L., Xian W., Zuo X., Zhang Q., Zhang L., Ma S., Sun Q., Nat. Commun., 2021,12, 1844 [61] Fan C., Wu H., Guan J., You X., Yang C., Wang X., Cao L., Shi B., Peng Q., Kong Y., Wu Y., Khan N. A., Jiang Z., Angew. Chem., Int. Ed., 2021, 60, 18051 [62] Zhang Z., Wang W., Wang X., Zhang L., Cheng C., Liu X., Chem. Eng. J., 2022, 435, 133872 [63] Yue J. Y., Wang Y. T., Wu X., Yang P., Ma Y., Liu X. H., Tang B., Chem. Commun., 2021, 57, 12619 [64] Liu M., Wen Y., Lu L., Kang Q., Xie Z., Chen Y., Tian X., Jin H., Liu J., Chemelectrochem, 2021, 8, 4490 [65] Lei Z., Lucas F. W. S., Canales Moya E., Huang S., Rong Y., Wesche A., Li P., Bodkin L., Jin Y., Holewinski A., Zhang W., Chin. Chem. Lett., 2021, 32, 3799 [66] Zhai L., Yang S., Yang X., Ye W., Wang J., Chen W., Guo Y., Mi L., Wu Z., Soutis C., Xu Q., Jiang Z., Chem. Mater., 2020, 32, 9747 [67] Liu J., Cheng T., Jiang L., Zhang H., Shan Y., Kong A., Electrochim. Acta, 2020, 363, 137280 [68] Peng P., Shi L., Huo F., Mi C., Wu X., Zhang S., Xiang Z., Sci. Adv., 2019, 5, eaaw2322 [69] Yi J. D., Xu R., Wu Q., Zhang T., Zang K. T., Luo J., Liang Y. L., Huang Y. B., Cao R., ACS Energy Lett., 2018,3, 883 [70] Zuo Q., Cheng G., Luo W., Dalton Trans.,2017, 46, 9344 [71] Yang S., Li X., Tan T., Mao J., Xu Q., Liu M., Miao Q., Mei B., Qiao P., Gu S., Sun F., Ma J., Zeng G., Jiang Z., Appl. Catal., B, 2022, 307, 121147 [72] Wang Z., Zhou L., Li R., Qu K., Wang L., Kang W., Li H., Xiong S., Microporous Mesoporous Mater., 2022, 330, 111609 [73] Pei F., Chen M., Kong F., Huang Y., Cui X., Appl. Surf. Sci., 2022, 587, 152922 [74] Miao Q., Yang S., Xu Q., Liu M., Wu P., Liu G., Yu C., Jiang Z., Sun Y., Zeng G., Small Struct., 2022,3, 2100225 [75] Liu M., Xu Q., Miao Q., Yang S., Wu P., Liu G., He J., Yu C., Zeng G., J. Mater. Chem. A, 2022,10, 228 [76] Huang Y., Kong F., Tian H., Pei F., Chen Y., Meng G., Chang Z., Chen C., Cui X., Shi J., ACS Sustainable Chem. Eng.,2022, 10, 6370 [77] Park J. H., Lee C. H., Ju J. M., Lee J. H., Seol J., Lee S. U., Kim J. H., Adv. Funct. Mater., 2021,31, 2101727 [78] Jiang T., Jiang W., Li Y., Xu Y., Zhao M., Deng M., Wang Y., Carbon, 2021, 180, 92 [79] Guo Y., Yang S., Xu Q., Wu P., Jiang Z., Zeng G., J. Mater. Chem. A, 2021, 9, 13625 [80] Zhang X., Liu L., Liu J., Cheng T., Kong A., Qiao Y., Shan Y., J. Alloys Compd., 2020, 824, 153958 [81] Zhang S., Xia W., Yang Q., Kaneti Y. V., Xu X., Alshehri S. M., Ahamad T., Hossain M. S. A., Na J., Tang J., Yamauchi Y., Chem. Eng. J., 2020, 396, 125154 [82] Xu Q., Qian J., Luo D., Liu G., Guo Y., Zeng G., Adv. Sustainable Syst., 2020, 4, 2000115 [83] Wei S., Wang Y., Chen W., Li Z., Cheong W. C., Zhang Q., Gong Y., Gu L., Chen C., Wang D., Peng Q., Li Y., Chem. Sci., 2020, 11, 786 [84] Roy S., Mari S., Sai M. K., Sarma S. C., Sarkar S., Peter S. C., Nanoscale, 2020, 12, 22718 [85] Li R., Xing L., Chen A., Zhang X., Kong A., Shan Y., Ionics, 2020, 26, 927 [86] Chen H., Li Q. H., Yan W., Gu Z. G., Zhang J., Chem. Eng. J., 2020, 401, 126149 [87] Zhao X., Pachfule P., Li S., Langenhahn T., Ye M., Tian G., Schmidt J., Thomas A., Chem. Mater., 2019,31, 3274 [88] Xu Q., Zhang H., Guo Y., Qian J., Yang S., Luo D., Gao P., Wu D., Li X., Jiang Z., Sun Y., Small, 2019, 15, e1905363 [89] Wu D., Xu Q., Qian J., Li X., Sun Y., Chem. Eur. J., 2019, 25, 3105 [90] Kong F., Fan X., Zhang X., Wang L., Kong A., Shan Y., Carbon, 2019, 149, 471 [91] Kong F., Fan X., Kong A., Zhou Z., Zhang X., Shan Y., Adv. Funct. Mater., 2018, 28, 1803973 [92] Zuo Q., Zhao P., Luo W., Cheng G., Nanoscale,2016, 8, 14271 [93] Lin Q. P., Bu X. H., Kong A. G., Mao C. Y., Bu F., Feng P. Y., Adv. Mater., 2015, 27, 3431 [94] Ji W., Wang T. X., Ding X., Lei S., Han B. H.Coord. Chem. Rev., 2021, 439, 213875 [95] Yang Q., Luo M., Liu K., Cao H., Yan H., Appl. Catal., B, 2020, 276, 119174 [96] Sun Q., Aguila B., Perman J., Nguyen N., Ma S., J. Am. Chem. Soc., 2016, 138, 15790 [97] Chen J., Tao X., Tao L., Li H., Li C., Wang X., Li C., Li R., Yang Q., Appl. Catal., B, 2019,241, 461 [98] Kumar G., Singh M., Goswami R., Neogi S., ACS Appl. Mater. Interfaces, 2020, 12, 48642 [99] Bu R., Zhang L., Liu X. Y., Yang S. L., Li G., Gao E. Q., ACS Appl. Mater. Interfaces, 2021,13, 26431 [100] Zhang L., Bu R., Liu X. Y., Mu P. F., Gao E. Q., Green Chem., 2021,23, 7620 [101] Qian C., Zhou W., Qiao J., Wang D., Li X., Teo W. L., Shi X., Wu H., Di J., Wang H., Liu G., Gu L., Liu J., Feng L., Liu Y., Quek S. Y., Loh K. P., Zhao Y., J. Am. Chem. Soc., 2020, 142, 18138 [102] Aiyappa H. B., Thote J., Shinde D. B., Banerjee R., Kurungot S., Chem. Mater.,2016, 28, 4375 [103] Ma Y. X., Li Z. J., Wei L., Ding S. Y., Zhang Y. B., Wang W., J. Am. Chem. Soc., 2017, 139, 4995 [104] Tang J., Su C., Shao Z., Small Methods, 2021, 5, 2100945 [105] Liu M., Xu Q., Miao Q., Yang S., Wu P., Liu G., He J., Yu C., Zeng G., J. Mater. Chem. A, 2021, 10, 228 [106] Zhou G., Liu G., Liu X., Yu Q., Mao H., Xiao Z., Wang L., Adv. Funct. Mater., 2022, 32, 2107608 [107] Zhang C., Yang H., Zhong D., Xu Y., Wang Y., Yuan Q., Liang Z., Wang B., Zhang W., Zheng H., Cheng T., Cao R., J. Mater. Chem. A, 2020,8, 9536 [108] Wang Y., Sun P. F., Zhang C., Huang Z., Dang J., Liu X., Bao Z., Ma X., Zhang W., Cao R., Zheng H., ChemCatChem, 2022, 14, e2022001 [109] Tan H., Li Y., Jiang X., Tang J., Wang Z., Qian H., Mei P., Malgras V., Bando Y., Yamauchi Y., Nano Energy, 2017, 36, 286 [110] Zhang X., Xu X., Yao S., Hao C., Pan C., Xiang X., Tian Z. Q., Shen P. K., Shao Z., Jiang S. P., Small, 2022, 18, e2105329 [111] Li Z., Gan Q., Zhang Y., Hu J., Liu P., Xu C., Wu X., Ge Y., Wang F., Yao Q., Lu Z., Deng J., Nano Res., 2021, 15, 217 [112] Chen Z., Gao X., Wei X., Wang X., Li Y., Wu T., Guo J., Gu Q., Wu W. D., Chen X. D., Wu Z., Zhao D., Carbon, 2017, 121, 143 [113] Son H., Kim S., Lee J. H., Li O. L., J. Phys. D: Appl. Phys., 2021, 55, 074001 [114] Zhang B., Wang S., Qiu C., Xu Y., Zuo J., Appl. Surf. Sci., 2022, 573, 151506 [115] Fan L., Bai X., Xia C., Zhang X., Zhao X., Xia Y., Wu Z. Y., Lu Y., Liu Y., Wang H., Nat. Commun., 2022, 13, 2668 |
[1] | XU Guangyuan, LIU Qin, YAN Huan. Recent Advances of Single-atom Catalysts for Electro-catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1146-1150. |
[2] | SHU Chengyong, GAN Zhuofan, ZHOU Jia, WANG Zhen, TANG Wei. Highly Efficient Oxygen Reduction Reaction Fe-N-C Cathode in Long-durable Direct Glycol Fuel Cells [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1268-1274. |
[3] | ZHENG Meng, WANG Jin. Regulating the Oxygen Affinity of Single Atom Catalysts by Dual-atom Design for Enhanced Oxygen Reduction Reaction Activity [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1275-1281. |
[4] | ZHENG Ruonan, ZHAI Zihui, QIU Chenxi, GAO Rui, LV Yang, SONG Yujiang. Highly Active Electrocatalyst Derived from ZIF-8 Decorated with Iron(III) and Cobalt(III) Porphyrin Toward Efficient Oxygen Reduction in Both Alkaline and Acidic Media [J]. Chemical Research in Chinese Universities, 2022, 38(4): 961-967. |
[5] | CHEN Yu, CHEN Yongting, LIAO Yuxiang, CHEN Shengli. A Chemical Dealloying Approach for Pt Surface-enriched Pt3Co Alloy Nanoparticles as Oxygen Reduction Reaction Electrocatalysts [J]. Chemical Research in Chinese Universities, 2022, 38(4): 991-998. |
[6] | WEI Xiao, LI Xinhao, WANG Kaixue and CHEN Jiesheng. Design of Functional Carbon Composite Materials for Energy Conversion and Storage [J]. Chemical Research in Chinese Universities, 2022, 38(3): 677-687. |
[7] | SONG Jialong, WANG Zitao, LIU Yaozu, TUO Chao, WANG Yujie, FANG Qianrong, and QIU Shilun. A Three-dimensional Covalent Organic Framework for CO2 Uptake and Dyes Adsorption [J]. Chemical Research in Chinese Universities, 2022, 38(3): 834-837. |
[8] | CUI Yumeng, MIAO Zhuang, LIU Qi, JIN Fenchun, ZHAI Yufeng, ZHANG Lingyan, WANG Wenli, WANG Ke, LIU Guiyan, ZENG Yongfei. Construction of a Three-dimensional Covalent Organic Framework via the Linker Exchange Strategy [J]. Chemical Research in Chinese Universities, 2022, 38(2): 402-408. |
[9] | CAO Xiaohao, HE Yanjing, ZHANG Zhengqing, SUN Yuxiu, HAN Qi, GUO Yandong, ZHONG Chongli. Predicting of Covalent Organic Frameworks for Membrane-based Isobutene/1,3-Butadiene Separation: Combining Molecular Simulation and Machine Learning [J]. Chemical Research in Chinese Universities, 2022, 38(2): 421-427. |
[10] | WANG Guangbo, XIE Kehui, ZHU Fucheng, KAN Jinglan, LI Sha, GENG Yan, DONG Yubin. Construction of Tetrathiafulvalene-based Covalent Organic Frameworks for Superior Iodine Capture [J]. Chemical Research in Chinese Universities, 2022, 38(2): 409-414. |
[11] | MENG Weijia, LI Yang, ZHAO Ziqiang, SONG Xiaoyu, LU Fanli, CHEN Long. Ultrathin 2D Covalent Organic Framework Film Fabricated via Langmuir-Blodgett Method with a “Two-in-One” Type Monomer [J]. Chemical Research in Chinese Universities, 2022, 38(2): 440-445. |
[12] | HOU Bang, LI Ziping, KANG Xing, JIANG Hong, CUI Yong. Recent Advances of Covalent Organic Frameworks for Chiral Separation [J]. Chemical Research in Chinese Universities, 2022, 38(2): 350-355. |
[13] | JIA Shuping, ZHAO Peng, LIU Qi, CHEN Yao, CHENG Peng, YANG Yi, ZHANG Zhenjie. Stepwise Fabrication of Proton-conducting Covalent Organic Frameworks for Hydrogen Fuel Cell Applications [J]. Chemical Research in Chinese Universities, 2022, 38(2): 461-467. |
[14] | LIU Shujing, GUO Jia. Two-dimensional Covalent Organic Frameworks: Intrinsic Synergy Promoting Photocatalytic Hydrogen Evolution [J]. Chemical Research in Chinese Universities, 2022, 38(2): 373-381. |
[15] | WANG Lu, WANG Dong. Two-dimensional Covalent Organic Frameworks: Tessellation by Synthetic Art [J]. Chemical Research in Chinese Universities, 2022, 38(2): 265-274. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||