Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6): 1289-1295.doi: 10.1007/s40242-021-1316-y
• Articles • Previous Articles Next Articles
ZHANG Luwei, LIU Jingyi, BAI Ling, WANG Ning
Received:
2021-08-16
Revised:
2021-09-14
Online:
2021-11-23
Published:
2021-11-23
Contact:
WANG Ning
E-mail:wang_ning@sdu.edu.cn
Supported by:
ZHANG Luwei, LIU Jingyi, BAI Ling, WANG Ning. Diffusion Kinetics Study of Lithium Ion in the Graphdiyne Based Electrode[J]. Chemical Research in Chinese Universities, 2021, 37(6): 1289-1295.
[1] Jia Z., Li Y., Zuo Z., Liu H., Huang C., Li Y., Accounts of Chemical Research, 2017, 50(10), 2470 [2] Li Y., Xu L., Liu H., Li Y., Chemical Society Reviews, 2014, 43(8), 2572 [3] Li Y. J., Liu T. F., Liu H. B., Tian M. Z., Li Y. L., Accounts of Chemical Research, 2014, 47(4), 1186 [4] Zheng H. Y., Li Y. J., Liu H. B. A., Yin X. D., Li Y. L., Chemical Society Reviews, 2011, 40(9), 4506 [5] Wu Q., Yang L., Wang X., Hu Z., Accounts of Chemical Research, 2017, 50(2), 435 [6] Yang S., Bachman R. E., Feng X., Muellen K., Accounts of Chemical Research, 2013, 46(1), 116 [7] Bai L., Wang N., Li Y., Advanced Materials, 2021, 33, 2102811 [8] Li M., Wang Z.-K., Kang T., Yang Y., Gao X., Hsu C.-S., Li Y., Liao L.-S., Nano Energy, 2018, 43, 47 [9] Xu H., Zhang H., Fang L., Yang J., Wu K., Wang Y., ACS Nano, 2015, 9(7), 6817 [10] Gaddam R. R., Yang D., Narayan R., Raju K. V. S. N., Kumar N. A., Zhao X. S., Nano Energy, 2016, 26, 346 [11] Wang N., Li X., Tu Z., Zhao F., He J., Guan Z., Huang C., Yi Y., Li Y., Angewandte Chemie-International Edition, 2018, 57(15), 3968 [12] Gao J., Li J., Chen Y., Zuo Z., Li Y., Liu H., Li Y., Nano Energy, 2018, 43, 192 [13] Yang Z., Song Y., Zhang C., He J., Li X., Wang X., Wang N., Li Y., Huang C., Advanced Energy Materials, 2021, 2101197 [14] Huang C. S., Li Y. J., Wang N., Xue Y. R., Zuo Z. C., Liu H. B., Li Y. L., Chemical Reviews, 2018, 118(16), 7744 [15] Li G. X., Li Y. L., Liu H. B., Guo Y. B., Li Y. J., Zhu D. B., Chemical Communications, 2010, 46(19), 3256 [16] Xue Y., Huang B., Yi Y., Guo Y., Zuo Z., Li Y., Jia Z., Liu H., Li Y., Nature Communications, 2018, 9(1), 1460 [17] Hui L., Xue Y., Huang B., Yu H., Zhang C., Zhang D., Jia D., Zhao Y., Li Y., Liu H., Li Y., Nature Communications, 2018, 9, 5309 [18] Hui L., Xue Y., Yu H., Liu Y., Fang Y., Xing C., Huang B., Li Y., Journal of the American Chemical Society, 2019, 141(27), 10677 [19] Xing C., Xue Y., Huang B., Yu H., Hui L., Fang Y., Liu Y., Zhao Y., Li Z., Li Y., Angewandte Chemie-International Edition, 2019, 58(39), 13897 [20] Fang Y., Xue Y., Li Y., Yu H., Hui L., Liu Y., Xing C., Zhang C., Zhang D., Wang Z., Chen X., Gao Y., Huang B., Li Y., Angewandte Chemie-International Edition, 2020, 59, 13021 [21] Fang Y., Xue Y., Hui L., Yu H., Li Y., Angewandte Chemie-International Edition, 2021, 60, 3170 [22] Shang H., Zuo Z. C., Li L., Wang F., Liu H. B. A., Li Y. J., Li Y. L., Angewandte Chemie-International Edition, 2018, 57(3), 774 [23] Wang F., Zuo Z., Li L., Li K., He F., Jiang Z., Li Y., Angewandte Chemie International Edition, 2019, 58(42), 15010 [24] Zhang S., Liu H., Huang C., Cui G., Li Y., Chemical Communications, 2015, 51(10), 1834 [25] Wang N., He J., Wang K., Zhao Y., Jiu T., Huang C., Li Y., Advanced Materials, 2019, 31(42), 1803202 [26] Wang N., He J., Tu Z., Yang Z., Zhao F., Li X., Huang C., Wang K., Jiu T., Yi Y., Li Y., Angewandte Chemie-International Edition, 2017, 56(36), 10740 [27] Zhao F., Li X., He J., Wang K., Huang C., Chemical Engineering Journal, 2021, 413, 127486 [28] Li G., Li Y., Qian X., Liu H., Lin H., Chen N., Li Y., Journal of Physical Chemistry C, 2011, 115(6), 2611 [29] Qian X., Ning Z., Li Y., Liu H., Ouyang C., Chen Q., Li Y., Dalton Transactions, 2012, 41(3), 730 [30] Zhou J., Gao X., Liu R., Xie Z., Yang J., Zhang S., Zhang G., Liu H., Li Y., Zhang J., Liu Z., Journal of the American Chemical Society, 2015, 137(24), 7596 [31] Wang Z., Zheng Z., Xue Y., He F., Li Y., Advanced Energy Materials, 2021, 5(11), 2101138 [32] Zhao S., Xue Y., Wang Z., Zheng Z., Luan X., Gao Y., Li Y., Materials Chemistry Frontiers, 2021, 5(11), 4153 [33] Bai L., Zheng Z. Q., Wang Z. Q., He F., Xue Y. R., Wang N., Materials Chemistry Frontiers, 2021, 5(5), 2247 [34] Du Y., Xue Y., Zhang C., Liu Y., Fang Y., Xing C., He F., Li Y., Advanced Energy Materials, 2021, 11(18), 2100234 [35] Fang Y., Xue Y., Hui L., Yu H., Liu Y., Xing C., Lu F., He F., Liu H., Li Y., Nano Energy, 2019, 59, 591 [36] Hui L., Jia D., Yu H., Xue Y., Li Y., ACS Applied Materials & Interfaces, 2019, 11(3), 2618 [37] Li J., Gao X., Liu B., Feng Q., Li X.-B., Huang M.-Y., Liu Z., Zhang J., Tung C.-H., Wu L.-Z., Journal of the American Chemical Society, 2016, 138(12), 3954 [38] Gao X., Liu H., Wang D., Zhang J., Chemical Society Reviews, 2019, 48(3), 908 [39] Yi Y., Li J., Zhao W., Zeng Z., Lu C., Ren H., Sun J., Zhang J., Liu Z., Advanced Functional Materials, 2020, 30(31) 2003039 [40] Ren X., Li X., Yang Z., Wang X., He J., Wang K., Yin J., Li J., Huang C., Acs Sustainable Chemistry & Engineering, 2020, 8(7), 2614 [41] Gao J., Wang N., He J., Yang Z., Huang C., 2D Materials, 2020, 7(2), 025032 [42] Li X., Wang N., He J., Yang Z., Tu Z., Zhao F., Wang K., Yi Y., Huang C., Carbon, 2020, 162, 579 [43] Jang B., Koo J., Park M., Lee H., Nam J., Kwon Y., Lee H., Applied Physics Letters, 2013, 103(26), 263904 [44] Hwang H. J., Koo J., Park M., Park N., Kwon Y., Lee H., Journal of Physical Chemistry C, 2013, 117(14), 6919 [45] Du H., Yang H., Huang C., He J., Liu H., Li Y., Nano Energy, 2016, 22, 615 [46] Zuo Z. C., Shang H., Chen Y. H., Li J. F., Liu H. B., Li Y. J., Li Y. L., Chemical Communications, 2017, 53(57), 8074 [47] Wang K., Wang N., He J., Yang Z., Shen X., Huang C., ACS Applied Materials & Interfaces, 2017, 9(46), 40604 [48] Zhang H., Zhao X., Zhang M., Luo Y., Li G., Zhao M., Journal of Physics D-Applied Physics, 2013, 46(49), 495307 [49] Zhang Q., Tang C., Zhu W., Cheng C., Journal of Physical Chemistry C, 2018, 122(40), 22838 [50] Li L., Zuo Z., Shang H., Wang F., Li Y., Nano Energy, 2018, 53, 135 [51] Lu C., Yang Y., Wang J., Fu R. P., Zhao X. X., Zhao L., Ming Y., Hu Y., Lin H. Z., Tao X. M., Li Y. L., Chen W., Nature Communications, 2018, 9, 752 [52] Liu Y., Xue Y., Yu H., Hui L., Huang B., Li Y., Advanced Functional Materials, 2021, 31(16) [53] Yu H., Xue Y., Hui L., He F., Zhang C., Liu Y., Fang Y., Xiang C., Li Y., Liu H., Li Y., Nano Energy, 2019, 64, 103928 [54] Shen X., Yang Z., Wang K., Wang N., He J., Du H., Huang C., Chemelectrochem, 2018, 5(11), 1435 [55] He J. J., Zhou P., Jiao N., Ma S. Y., Zhang K. W., Wang R. Z., Sun L. Z., Scientific Reports, 2014, 4, 4014 [56] Zhang C., Du R., Biendicho J. J., Yi M., Xiao K., Yang D., Zhang T., Wang X., Arbiol J., Llorca J., Zhou Y., Morante J. R., Cabot A., Advanced Energy Materials, 2021, 11(24), 2100432 [57] Lin Z., Liu G., Zheng Y., Lin Y., Huang Z., Journal of Materials Chemistry A, 2018, 6(45), 22655 [58] Gao J., He J., Wang N., Li X., Yang Z., Wang K., Chen Y., Zhang Y., Huang C., Chemical Engineering Journal, 2019, 373, 660 [59] Hua B., Kang H., Zhong J., Zhan X., Xu L., Li J., Zheng Y., Zheng Z., ACS Applied Materials & Interfaces, 2021, 13(29), 34332 [60] Wang J., Zhang S., Zhou J., Liu R., Du R., Xu H., Liu Z., Zhang J., Liu Z., Physical Chemistry Chemical Physics, 2014, 16(23), 11303 [61] Liu L., Kan Y., Gao K., Wang J., Zhao M., Chen H., Zhao C., Jiu T., Jen A.-K.-Y., Li Y., Advanced Materials, 32(11), 1907604 [62] Yang N., Liu Y., Wen H., Tang Z., Zhao H., Li Y., Wang D., ACS Nano, 2013, 7(2), 1504 [63] Liu J., Wang N., He F., Bai L., Zhang L., Li Y., 2D Materials, 2021, 8, 044005 [64] Zhao R., Di H., Hui X., Zhao D., Wang R., Wang C., Yin L., Energy & Environmental Science, 2020, 13(1), 246 [65] Di Lecce D., Hassoun J., The Journal of Physical Chemistry C, 2015, 119(36), 20855 [66] Li L., Zuo Z., Wang F., Gao J., Cao A., He F., Li Y., Advanced Materials, 2020, 32, e2000140 [67] Zuo Z., He F., Wang F., Li L., Li Y., Advanced Materials, 2020, 32, 2004379 |
[1] | GAO Wei, LI Yufeng, ZHAO Jitao, ZHANG Zhe, TANG Weiwei, WANG Jun, WU Zhenyu, LI Zhenyu. Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1097-1104. |
[2] | DING Huimin, MAL Arindam, WANG Cheng. Energy Storage in Covalent Organic Frameworks: From Design Principles to Device Integration [J]. Chemical Research in Chinese Universities, 2022, 38(2): 356-363. |
[3] | LAN Weifei, HU Ruifeng, HUANG Danrong, DONG Xu, SHEN Gangyi, CHANG Shan, DAI Dongsheng. Palladium Nanoparticles/Graphdiyne Oxide Nanocomposite with Excellent Peroxidase-like Activity and Its Application for Glutathione Detection [J]. Chemical Research in Chinese Universities, 2022, 38(2): 529-534. |
[4] | ZHENG Zhiqiang, HE Feng, XUE Yurui, LI Yuliang. Loading Nickel Atoms on GDY for Efficient CO2 Fixation and Conversion [J]. Chemical Research in Chinese Universities, 2022, 38(1): 92-98. |
[5] | LI Xiaodan, GUO Mengyu, CHEN Chunying. Graphdiyne: from Preparation to Biomedical Applications [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1176-1194. |
[6] | HU Guilin, HE Jingyi, LI Yongjun. Application of Graphdiyne and Its Analogues in Photocatalysis and Photoelectrochemistry [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1195-1212. |
[7] | MAN Yixiao, ZHAO Jinyu, LIU Shipeng, PAN Qingyan, ZHAO Yingjie. Heteroatom Doped Graphdiyne and Analogues: Synthesis, Structures and Applications [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1213-1223. |
[8] | SONG Congying, LI Guoxing. Graphdiyne: A Versatile Material in Electrochemical Energy Conversion and Storage [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1224-1241. |
[9] | WONG Hon Ho, SUN Mingzi, HUANG Bolong. Synergistic Effect of Graphdiyne-based Electrocatalysts [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1242-1256. |
[10] | LI Ru, ZHANG Mingjia, LI Xiaodong, MA Xiaodi, HUANG Changshui. Study of Graphdiyne-based Magnetic Materials [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1257-1267. |
[11] | LI Liang, ZUO Zicheng, HE Feng, JIANG Zhongqing, LI Yuliang. Nitrogen-rich Graphdiyne Film for Efficiently Suppressing the Methanol Crossover in Direct Methanol Fuel Cells [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1275-1282. |
[12] | LI Meiping, WANG Kaihang, LV Qing. N,P-co-Doped Graphdiyne as Efficient Metal-free Catalysts for Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1283-1288. |
[13] | LI Jiaofu, CHEN Yanhuan, WANG Fuhui, GUO Jie, HE Feng, LIU Huibiao. Graphdiyne Hybrid Nanowall Arrays for High-capacity Aqueous Rechargeable Zinc Ion Battery [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1301-1308. |
[14] | TANG Jin, ZHAO Min, CAI Xu, LIU Le, LI Xiaofang, JIU Tonggang. Graphdiyne Oxide Modified NiOx for Enhanced Charge Extraction in Inverted Planar MAPbI3 Perovskite Solar Cells [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1309-1316. |
[15] | FU Xinliang, ZHU Aonan, CHEN Xiaojie, ZHANG Shifu, WANG Mei, YUAN Mingjian. Stabilization of Cu/Ni Alloy Nanoparticles with Graphdiyne Enabling Efficient CO2 Reduction [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1328-1333. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||