Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1): 112-117.doi: 10.1007/s40242-016-5252-1

• Articles • Previous Articles     Next Articles

Crystal Structures, Thermal Analysis and Electrochemical Behaviors of Functionalized Pyridinium Ionic Liquids Comprising One 1-Ethyl Acetate Group

ZHAO Yamei1, CUI Hongmeng1, ZHENG Changzheng1, CHEN Xiaogang1,2, LI Chunyang1   

  1. 1. Department of Chemical Engineering, School of Environment and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China;
    2. School of Materials, the University of Manchester, Manchester, M13 9PL, UK
  • Received:2015-06-29 Revised:2015-08-08 Online:2016-02-01 Published:2015-10-12
  • Contact: ZHAO Yamei E-mail:zhaoyameihp@126.com
  • Supported by:

    Supported by the Natural Science Foundation of Shaanxi Province, China(No.2013JQ6010) and the Special Research Plan of Shaanxi Provincial Department of Education for Young Talents, China(No.12JK0457).

Abstract:

Pyridinium ionic liquids(ILs, 1-ethyl acetate pyridinium hexfluorophosphate[EAPy][PF6] and 1-ethyl acetate-3-methyl pyridinium hexfluorophosphate[EAMPy][PF6]), were synthesized by a two-step process involving introduction of one ethyl acetate group and anion metathesis. Colorless single crystals of the two ILs were initially obtained using the solvent-evaporation method in mixed solvents. Single-crystal X-ray diffraction was used to determine the crystal structures.[EAPy][PF6] crystallizes in the monoclinic space group C2/c with a=2.2748(16) nm, b=0.6204(4) nm, c=1.8552(12) nm and Z=8, whereas[EAMPy][PF6] crystallizes in the orthorhombic space group P212121 with a=0.7126(17) nm, b=1.2792(3) nm, c=1.5327(3) nm and Z=4. The structure of[EAPy][PF6] contains double zigzag chains formed by alternately pairing large organic cations with the octahedral anions of[P1F6]- or[P2F6]-. The[P1F6]- and[P2F6]- anions occupy respectively two distinct crystallographic sites in crystal packing models. The structure of[EAMPy][PF6] includes ladder-type chains constructed through pairing pyridinium cations with inorganic anions of[PF6]-. The[PF6]- anion in[EAMPy][PF6] shows a distorted octahedron structure and is sandwiched by ethyl acetate groups in crystallographic stacking. This study reveals the influence of chemical mo-dification involving the methyl group(CH3) onto crystallographic structure of pyridinium ILs. Thermal analysis indicates that the difficult crystallization of the two ILs is related to the low void filling of ion pairs in crystal structure, leading to relatively low melting point and evident supercooling during the cooling process. Additionally, the experimental results indicate that the two ILs have electrochemical activity. The ethyl acetate group also allows downward shifting of electrochemical windows to less negative positions and the ionic conductivities of the two ILs follow an Arrhenius-type behavior.

Key words: Pyridinium ionic liquid, Crystal structure, Thermal analysis, Electrochemical property