Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2): 162-172.doi: 10.1007/s40242-024-4034-4
• Reviews • Previous Articles Next Articles
XU Xinran, LIU An-an, PANG Daiwen
Received:
2024-02-20
Revised:
2024-03-14
Online:
2024-04-01
Published:
2024-03-27
Contact:
LIU An-an ananliu@nankai.edu.cn;PANG Daiwen dwpang@whu.edu.cn
Supported by:
XU Xinran, LIU An-an, PANG Daiwen. Rational Design of Capping Ligands of Quantum Dots for Biosensing[J]. Chemical Research in Chinese Universities, 2024, 40(2): 162-172.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Murray C. B., Kagan C. R., Bawendi M. G., Annu. Rev. Mater. Sci., 2000, 30, 545 [2] Zhou J. H., Zhu M. Y., Meng R. Y., Qin H. Y., Peng X. G., J. Am. Chem. Soc., 2017, 139, 16556 [3] Liu Z. Y., Liu A. A., Fu H., Cheng Q. Y., Zhang M. Y., Pan M. M., Liu L. P., Luo M. Y., Tang B., Zhao W., Kong J., Shao X., Pang D. W., J. Am. Chem. Soc., 2021, 143 (32), 12867 [4] Giansante C., Nanoscale, 2019, 11, 9478 [5] Cai J. R., Liu A. A., Shi X. H., Fu H. H., Zhao W., Xu L. G., Kuang H., Xu C. L., Pang D. W., J. Am. Chem. Soc., 2023, 145 (44), 24375 [6] Medintz I. L., Clapp A. R., Mattoussi H., Goldman E. R., Fisher B., Mauro J. M., Nat. Mater., 2003, 2, 630 [7] Clapp A. R., Pons T., Medintz I. L., Delehanty J. B., Melinger J. S., Tiefenbrunn T., Dawson P. E., Fisher B. R., O’Rourke B., Mattoussi H., Adv. Mater., 2007, 19 (15), 1921 [8] Li B., Lin J., Huang P., Chen X., Chem. Soc. Rev., 2022, 51, 7692 [9] Hildebrandt N., Spillmann C. M., Algar W. R., Pons T., Stewart M. H., Oh E., Susumu K., Díaz S. A., Delehanty J. B., Medintz I. L., Chem. Rev., 2017, 117 (2), 536 [10] Chen B., Ma J., Yang T., Chen L., Gao P. F., Huang C. Z., Biosens. Bioelectron., 2017, 98, 36 [11] Zhao L., Song X., Fan D., Liu X., Wang H., Wei Q., Wu D., Anal. Chem., 2023, 95 (13), 5695 [12] Liu W. H., Greytak A. B., Lee J., Wong C. R., Park J., Marshall L. F., Jiang W., Curtin P. N., Ting A. Y., Nocera D. G., Fukumura D., Jain R. K., Bawendi M. G., J. Am. Chem. Soc., 2010, 132 (2), 472 [13] Shuhendler A. J., Prasad P., Chan H. C., Gordijo C. R., Soroushian B., Kolios M., Yu K., O’Brien P. G., Rauth A. M., Wu X. Y., ACS Nano, 2011, 5 (3), 1958 [14] Rotko G., Cichos J., Wysokińska E., Karbowiak M., Kałas W., Colloids Surf. B, 2019, 181 ,119 [15] Ding C. P., Huang Y. J., Shen Z. Y., Chen X. Y., Adv. Mater., 2021, 33 (32), 2007768 [16] Liu W. J., Wang L. J., Zhang C. Y., Anal. Chim. Acta, 2023, 1278, 341615 [17] Green C. M., Spangler J., Susumu K., Stenger D. A., Medintz I. L., Díaz S. A., ACS Nano, 2022, 16 (12), 20693 [18] Día S. A., Sen S., Gemmill K. B., Brown C. W., Oh E., Susumu K., Stewart M. H., Breger J. C., Aragonés G. L., Field L. D., Deschamps J. R., Král P. Medintz I. L., ACS Nano, 2017, 11 (6), 5884 [19] Zhao Y., Chen J., Hu Z., Chen Y., Tao Y., Wang L., Li L., Wang P., Li H. Y., Zhang J., Tang J., Liu H., Biosens. Bioelectron., 2022, 202 (15), 113974 [20] Montaseri Z., Tamaddon A. M., Raee M. J., Farvadi F., ChemistryOpen, 2023, 12 (10), e202300094 [21] Ye Y., Wu T., Jiang X., Cao J., Ling X., Mei Q., Chen H., Han D., Xu J. J., Shen Y., ACS Appl. Mater. Interfaces, 2020, 12 (12), 14552 [22] Ji J., He L., Shen Y., Hu P., Li X., Jiang L. P., Zhang J. R., Li L., Zhu J. J., Anal. Chem., 2014, 86 (7), 3284 [23] Zamaleeva A. I., Collot M., Bahembera E., Tisseyre C., Rostaing P., Yakovlev A. V., Oheim M., Waard M., Mallet J. M., Feltz A., Nano Lett., 2014, 14 (6), 2994 [24] Stewart M. H., Huston A. L., Scott A. M., Oh E., Alga W. S., Deschamps J. R., Susumu K., Jain V., Prasuhn D. E., Blanco-Canosa J., Dawson P. E., Medintz I. L., ACS Nano, 2013, 7 (10), 9489 [25] Le T. H., Kim S., Chae S., Choi Y., Park C. S., Heo E., Lee U., Kim H., Kwon O. S., Im W. B., Yoon H., J. Colloid. Interface Sci., 2020, 564, 88 [26] Liu M., Chen Z. Y., He X. H., Liu X. Y., Hu H. L., Tian H., Liu Y., Jiang F. L., Chem. Mater., 2023, 35 (5), 1868 [27] Clark P. C. J., Flavell W. R., Chem. Rec., 2019, 19 (7), 1233 [28] Yu M. X., Yang X. H., Zhang Y. J., Yang H. C., Huang H. Y., Wang Z., Dong J. Y., Zhang R., Sun Z. Q., Li C. Y., Wang Q. B., Small, 2021, 17, 2006111 [29] Beygi H., Sajjadi S. A., Babakhani A., Young J. F., Veggel F. C. J. M., Appl. Surf. Sci., 2018, 457, 1 [30] Gervasi C. F., Kislitsyn D. A., Allen T. L., Hackley J. D., Maruyama R., Nazin G. V., Nanoscale, 2015, 7, 19732 [31] Kundu B., Pal A. J., J. Phys. Chem. C, 2018, 122 (21), 11570 [32] Wright J. T., Forsythe K., Hutchinsb J., Meulenberg R. W., Nanoscale, 2016, 8, 9417 [33] Smith A. M., Johnston K. A., Crawford S. E., Marbella L. E., Millstone J. E., Analyst, 2017, 142, 11 [34] Hartley C. L., Dempsey J. L., Chem. Mater., 2021, 33, 2655 [35] Svit K. A., Zarubanov A. A., Duda T. A., Trubina S. V., Zvereva V. V., Fedosenko E. V., Zhuravlev K. S., Langmuir, 2021, 37 (18), 5651 [36] Kennehan E. R., Munson K. T., Grieco C., Doucette G. S., Marshall A. R., Beard M. C., Asbury J. B., J. Am. Chem. Soc., 2021, 143 (34), 13824 [37] Fenoll D. A., Sodupe M., Solans-Monfort X., J. Phys. Chem. C, 2014, 118 (13), 7094 [38] Fenoll D. A., Sodupe M., Solans-Monfort X., ACS Omega, 2023, 8 (12),11467 [39] Bloom B. P., Zhao L. B., Wang Y., Waldeck D. H., Liu R., Zhang P., Beratan D. N., J. Phys. Chem. C, 2013, 117 (43), 22401 [40] Bealing C. R., Baumgardner W. J., Choi J. J., Hanrath T., Hennig R. G., ACS Nano, 2012, 6 (3), 2118 [41] Choi J. J., Bealing C. R., Bian K., Hughes K. J., Zhang W., Smilgies D. M., Hennig R. G., Engstrom J. R., Hanrath T., J. Am. Chem. Soc., 2011, 133 (9), 3131 [42] Liang D. Y., Hong J. W., Fang D., Bennett J. W., Mason S. E., Hamersc R. J., Cui Q., Phys. Chem. Chem. Phys., 2018, 20, 3349 [43] Seker F., Meeker K., Kuech T. F., Ellis A. B., Chem. Rev., 2000, 100, 2505 [44] Medintz I. L., Stewart M. H., Trammell S. A., Susumu K., Delehanty J. B., Mei B. C., Melinger J. S., Blanco-Canosa J. B., Dawson P. E., Mattoussi H., Nat. Mater., 2010, 9, 676 [45] Ji X., Palui G., Avellini T., Na H. B., Yi C., Knappenberger K. L., Mattoussi H., J. Am. Chem. Soc., 2012, 134 (13), 6006 [46] Harvie A. J., Smith C. T., Ahumada-Lazo R., Jeuken L. J. C., Califano M., Bon R. S., Hardman S. J. O., Binks D. J., Critchley K., J. Phys. Chem. C, 2018, 122 (18), 10173 [47] Ast S., Rutledge P. J., Todd M. H., Phys. Chem. Chem. Phys., 2014, 16, 25255 [48] Tang R., Lee H., Achilefu S., J. Am. Chem. Soc., 2012, 134 (10), 4545 [49] Sławski J., Białek R., Burdziński G., Gibasiewicz K., Worch R., Grzyb J., J. Phys. Chem. B, 2021, 125 (13), 3307 [50] Darżynkiewicz Z. M., Pędziwiatr M., Grzyb J., J. Lumin., 2017, 183, 401 [51] Kurniawan D., Anjali B. A., Setiawan O., Ostrikov K. K., Chung Y. G., Chiang W. H., ACS Appl. Mater. Interfaces, 2022, 14(1), 1670 [52] Sajwan R. K., Pandey S., Kumar R., Dhiman T. K., Eremin S. A., Solanki P. R., Environ. Sci.: Nano, 2021, 8, 2693 [53] Chang S. H., Hanène S. M., Philippe R., Chang S. M., Microchim. Acta, 2023, 190, 326 [54] Martinez M. S., Nolen M. A., Pompetti N. F., Richter L. J., Farberow C. A., Johnson J. C., Beard M. C., ACS Nano, 2023, 17 (15), 14916 [55] Luo M. Y., Tang B., Liu A. A., Zhao J. Y., Zhang Z. L., Pang D. W., Nano Res., 2023, 16, 12608 [56] Empedocles S. A., Bawendi M. G., Science, 1997, 278, 2114 [57] Park K. W., Deutsch Z., Li J. J., Oron D., Weiss S., ACS Nano, 2012, 6 (11), 10013 [58] Mishra H., Umrao S., Singh J., Srivastava R. K., Ali R., Misra A., Srivastava A., Adv. Optical Mater., 2017, 5, 1601021 [59] Ratnesh R. K., Mehata M. S., AIP Adv., 2015, 5, 097114 [60] Coto-García A. M., Fernández-Argüelles M. T., Costa-Fernández J. M., Sanz-Medel A., Valledor M., Campo J. C., Ferrer F. J., J. Nanopart. Res., 2013, 15, 1330 [61] Thompson C. M., Kodaimati M., Westmoreland D., Calzada R., Weiss E. A., J. Phys. Chem. Lett., 2016, 7 (19), 3954 [62] Zanetti-Polzi L., Charchar P., Yarovsky I., Corni S., ACS Nano, 2022, 16 (12), 20129 [63] Lin Y., Charchar P., Christofferson A. J., Thomas M. R., Todorova N., Mazo M. M., Chen Q., Doutch J., Richardson R., Yarovsky I., Stevens M. M., J. Am. Chem. Soc., 2018, 140 (51), 18217 [64] Eagle F. W., Park N., Cash M., Cossairt B. M., ACS Energy Lett., 2021, 6 (3), 977 [65] Soreni H. M., Yaacobi G. N., Steiner D., Aharoni A., Banin U., Millo O., Tessler N., Nano Lett., 2008, 8 (2), 678 [66] Brown P. R., Kim D., Lunt R. R., Zhao N., Bawendi M. G., Grossman J. C., Bulović V., ACS Nano, 2014, 8 (6), 5863 [67] Segui Barragan V., Roman B. J., Shubert-Zuleta S. A., Berry M. W., Celio H., Milliron D. J., Nano Lett., 2023, 23 (17), 7983 [68] Yaacobi-Gross N., Soreni-Harari M., Zimin M., Kababya S., Schmidt A., Tessler N., Nat. Mater., 2011, 10, 974 [69] Yaacobi-Gross N., Garphunkin N., Solomeshch O., Vaneski A., Susha A. S., Rogach A. L., Tessler N., ACS Nano, 2012, 6 (4), 3128 [70] Ludwig A., Sern P., Morgenstein L., Yang G., Bar-Elli O., Ortiz G., Miller E., Oron D., Grupi A., Weiss S., Triller A., ACS Photonics, 2020, 7 (1), 114 |
[1] | CHEN Yanyue, LIU Jiali, LIU Jiawen, HU Rong, YANG Yunhui, ZHANG Xiaobing. Colorimetric and Photothermal Dual-modal Visual Detection of Iodide Ion Based on G-Quadruplex-Hemin Cascade Signal Amplification [J]. Chemical Research in Chinese Universities, 2024, 40(2): 305-310. |
[2] | LYU Xiaomeng, DUAN Yuchen, CHEN Yulan, and CHENG Shanshan. Bioassay of Carcinoembryonic Antigens by Organic Field-effect Transistors Based on D-A Type Conjugated Polymer [J]. Chemical Research in Chinese Universities, 2023, 39(6): 877-883. |
[3] | HOU Huipeng, TANG Shanshan, WANG Wei, LIU Miao, LIANG Axin, XIE Bingteng, YI Yue, and LUO Aiqin. Electrochemical Chiral Recognizing Tryptophan Enantiomers Based on Chiral Metal-Organic Framework D-MOF [J]. Chemical Research in Chinese Universities, 2023, 39(6): 976-984. |
[4] | TIAN Lin, CHENG Cheng, ZHAO Zhenwen, LIU Wei, and QI Li. Colorimetric Recognition of 3,4-Dihydroxy-D,L-phenylalanine with Tetrapeptide-modified Copper Nanoparticles as Chiral Nanozymes [J]. Chemical Research in Chinese Universities, 2023, 39(6): 1092-1099. |
[5] | YANG Jingshuang, ZHANG Yuxing, JIAN Zhongbao. Macrocyclic Binuclear α-Diimine Nickel Catalysts for Ethylene Polymerization [J]. Chemical Research in Chinese Universities, 2023, 39(5): 797-802. |
[6] | YANG Yiming, QIU Lili, SHI Xueliang. Chalcogen Effect of Atom Substitution on the Properties of Tris(2,4,6-trichlorophenyl)methyl(TTM) Radical [J]. Chemical Research in Chinese Universities, 2023, 39(2): 197-201. |
[7] | JIA Yin, FENG Fanda, SONG Xinyu, SHI Zhiqiang, SUN Lin, JIANG Ruiyu, TANG Lanqin, ZHANG Lei. An Allochroic Molecular Cage Switch for Sensing and Capturing Organic Pollutants [J]. Chemical Research in Chinese Universities, 2023, 39(2): 310-317. |
[8] | WANG Bo, WANG Menghui, PENG Fangqi, FU Xiaoyi, WEN Mei, SHI Yuyan, CHEN Mei, KE Guoliang, ZHANG Xiao-Bing. Construction and Application of DNAzyme-based Nanodevices [J]. Chemical Research in Chinese Universities, 2023, 39(1): 42-60. |
[9] | WU Zhifang, LIANG Zhishan, HE Ziqian, WANG Tianqi, XIAO Ren, HAN Fangjie, ZHAO Zhengzheng, HAN Dongfang, HAN Dongxue, NIU Li. A Label-free Photoelectrochemical Sensor Based on Bi2S3@Nitrogen Doped Graphene Quantum Dots for Ascorbic Acid Determination [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1387-1393. |
[10] | QIN Yang, YANG Yunhan, HE Ran, ZHOU Laicheng, ZHANG Ling. Self-assembled Nanosheets of Perylene Monoamide Derivative as Sensitive Fluorescent Biosensor for Exonuclease III Activity [J]. Chemical Research in Chinese Universities, 2022, 38(6): 1497-1503. |
[11] | TANG Tianwei, LIU Yinghuan, JIANG Ying. Recent Progress on Highly Selective and Sensitive Electrochemical Aptamer-based Sensors [J]. Chemical Research in Chinese Universities, 2022, 38(4): 866-878. |
[12] | CHANG Kaili, SUN Peng, DONG Xin, ZHU Chunnan, LIU Xiaojun, ZHENG Dongyun, LIU Chao. Aptamers as Recognition Elements for Electrochemical Detection of Exosomes [J]. Chemical Research in Chinese Universities, 2022, 38(4): 879-885. |
[13] | HU Lingling, LIU Ke, REN Guolan, LIANG Jiangong, WU Yuan. Progress in DNA Aptamers as Recognition Components for Protein Functional Regulation [J]. Chemical Research in Chinese Universities, 2022, 38(4): 894-901. |
[14] | SHEN Congcong, CHEN Yuehua, FENG Beidou, CHI Hongying, ZHANG Hua. Polypyrrole Hollow Nanotubes Loaded with Au and Fe3O4 Nanoparticles for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid [J]. Chemical Research in Chinese Universities, 2022, 38(4): 941-948. |
[15] | WANG Yue, WANG Jinling, MA Jianxin, ZHANG Yue, XU Na, WANG Xiuli. Multi-functional Photoelectric Sensor Based on a Three-fold Interpenetrated Cd(II) Coordination Polymer for Sensitively Detecting Different Ions [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1105-1110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||