Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2): 364-372.doi: 10.1007/s40242-022-1507-1
• Reviews • Previous Articles Next Articles
YAO Jin1,2, LU Ya1,3, SUN Huihui1, ZHAO Xin1
Received:
2021-12-27
Revised:
2022-02-16
Online:
2022-04-01
Published:
2022-05-18
Contact:
ZHAO Xin
E-mail:xzhao@sioc.ac.cn
Supported by:
YAO Jin, LU Ya, SUN Huihui, ZHAO Xin. Pore Engineering for Covalent Organic Framework Membranes[J]. Chemical Research in Chinese Universities, 2022, 38(2): 364-372.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Zhang Q.-P., Wang Z., Zhang Z.-W., Zhai T.-L., Chen J.-J., Ma H., Tan B., Zhang C., Angew. Chem. Int. Ed., 2021, 60, 12781. [2] Rodriguez K. M., Lin S., Wu A. X., Han G., Teesdale J. J., Doherty C. M., Smith Z. P., Angew. Chem. Int. Ed., 2021, 60, 6593. [3] Fan W., Ying Y., Peh S. B., Yuan H., Yang Z., Yuan Y. D., Shi D., Yu X., Kang C., Zhao D., J. Am. Chem. Soc., 2021, 143, 17716. [4] Kim S., Kim K., Jun G., Hwang W., ACS Nano, 2020, 14, 17233. [5] Wu X., Ding M., Xu H., Yang W., Zhang K., Tian H., Wang H., Xie Z., ACS Nano, 2020, 14, 9125. [6] Zhou Y.-C., Zhang Z.-M., Zhou L., Bao R.-Y., Liu Z.-Y., Yang M.-B., Yang W., J. Mater. Chem. A, 2021, 9, 14827. [7] Qu R., Zeng X., Lin L., Zhang G., Liu F., Wang C., Ma S., Liu C., Miao H., Cao L., ACS Nano, 2020, 14, 16654. [8] Zhang Z., He L., Zhu C., Qian Y., Wen L., Jiang L., Nat. Commun., 2020,11, 875. [9] Wang H., Su L., Yagmurcukardes M., Chen J., Jiang Y., Li Z., Quan A., Peeters F. M., Wang C., Geim A. K., Hu S., Nano Lett., 2020, 20, 8634. [10] Ragunath S., Roy S., Mitra S., Sep. Purif. Technol., 2016, 170, 427. [11] Kim S., Nham J., Jeong Y. S., Lee C. S., Ha S. H., Park H. B., Lee Y. J.,Chem. Mater., 2015, 27, 1255. [12] Kidambi P. R., Boutilier M. S. H., Wang L., Jang D., Kim J., Karnik R., Adv. Mater., 2017, 29, 1605896. [13] He G., Zhang R., Jiang Z., Acc. Mater. Res., 2021, 2, 630. [14] Geng K., He T., Liu R., Dalapati S., Tan K. T., Li Z., Tao S., Gong Y., Jiang Q., Jiang D., Chem. Rev., 2020, 120, 8814. [15] Jiang C., Feng X., Wang B., Acta Chim. Sinica, 2020,78, 466. [16] Wang P., Peng Y., Zhu C., Yao R., Song H., Kun L., Yang W., Angew. Chem. Int. Ed., 2021, 60, 19047. [17] Rungtaweevoranit B., Diercks C. S., Kalmutzki M. J., Yaghi O. M., Faraday Discuss., 2017, 201, 9. [18] Fan C., Geng H., Wu H., Peng Q., Wang X., Shi B., Kong Y., Yin Z., Liu Y., Jiang Z., J. Mater. Chem. A, 2021, 9, 17720. [19] Mohammed A. K., Shetty D., Environ. Sci.:Water Res. Technol., 2021,7, 1895. [20] Deng X., Zhao P., Zhou X., Bai L., Chem. Eng. J., 2021, 405, 126979. [21] Li J., Jing X., Li Q., Li S., Gao X., Feng X., Wang B., Chem. Soc. Rev., 2020,49, 3565. [22] Nagai A., Guo Z., Feng X., Jin S., Chen X., Ding X., Jiang D., Nat. Commun., 2011,2, 536. [23] Han N., Zhang Z., Gao H., Qian Y., Tan L., Yang C., Zhang H., Cui Z., Li W., Zhang X., ACS Appl. Mater. Interface, 2020, 12, 2926. [24] Wu X., Hong Y.-L., Xu B., Nishiyama Y., Jiang W., Zhu J., Zhang G., Kitagawa S., Horike S., J. Am. Chem. Soc., 2020, 142, 14357. [25] Sun Q., Aguila B., Perman J. A., Butts T., Xiao F.-S., Ma S., Chem, 2018, 4, 1726. [26] Li Z., Li H., Guan X., Tang J., Yusran Y., Li Z., Xue M., Fang Q., Yan Y., Valtchev V., Qiu S., J. Am. Chem. Soc., 2017, 139, 17771. [27] Hu Y., Dunlap N., Wan S., Lu S., Huang S., Sellinger I., Ortiz M., Jin Y., Lee S.-H., Zhang W., J. Am. Chem. Soc., 2019, 141, 7518. [28] Xiao A., Shi X., Zhang Z., Yin C., Xiong S., Wang Y., J. Membr. Sci., 2021, 624, 119122. [29] Shinde D. B., Sheng G., Li X., Ostwal M., Emwas A.-H., Huang K.-W., Lai Z., J. Am. Chem. Soc., 2018, 140, 14342. [30] Liu Y., Li W., Yuan C., Jia L., Liu Y., Huang A., Cui Y., Angew. Chem. Int. Ed., 2022, 61, e202113348. [31] Fan H., Mundstock A., Feldhoff A., Knebel A., Gu J., Meng H., Caro J., J. Am. Chem. Soc., 2018, 140, 10091. [32] He X., Yang Y., Wu H., He G., Xu Z., Kong Y., Cao L., Shi B., Zhang Z., Tongsh C., Jiao K., Zhu K., Jiang Z., Adv. Mater., 2020, 32, 2001284. [33] Wang R., Guo J., Xue J., Wang H., Small Struct., 2021, 2(10), 2100061. [34] Côté A. P., Benin A. I., Ockwig N. W., O'Keeffe M., Matzger A. J., Yaghi O. M., Science, 2005, 310, 1166. [35] Liang R.-R., Jiang S.-Y., A R.-H., Zhao X., Chem. Soc. Rev., 2020, 49, 3920. [36] Li M., Liu J., Li Y., Xing G., Yu X., Peng C., Chen L., CCS Chem., 2020, 2, 696. [37] Wang L.-L., Yang C.-X., Yan X.-P., Sci. China Chem., 2018, 61, 1470. [38] Fang J., Zhao W., Zhang M., Fang Q., Acta Chim. Sinica, 2021, 79, 186. [39] Bai L., Phua S. Z. F., Lim W. Q., Jana A., Luo Z., Tham H. P., Zhao L., Gao Q., Zhao Y., Chem. Commun., 2016, 52, 4128. [40] Wei S., Zhang F., Zhang W., Qiang P., Yu K., Fu X., Wu D., Bi S., Zhang F., J. Am. Chem. Soc., 2019, 141, 14272. [41] Bai L., Gao Q., Zhao Y., J. Mater. Chem. A, 2016, 4, 14106. [42] Liao H., Wang H., Ding H., Meng X., Xu H., Wang B., Ai X., Wang C., J. Mater. Chem. A, 2016, 4, 7416. [43] Feng X., Chen L., Dong Y., Jiang D., Chem. Commun., 2011, 47, 1979. [44] Liu H., Yan X., Chen W., Xie Z., Li S., Chen W., Zhang T., Xing G., Chen L., Sci. China Chem., 2021, 64, 827. [45] Lv H., Sa R., Li P., Yuan D., Wang X., Wang R., Sci. China Chem., 2020,63, 1289. [46] Joshi T., Chen C., Li H., Diercks C. S., Wang G., Waller P. J., Li H., Bredas J.-L., Yaghi O. M., Crommie M. F., Adv. Mater., 2019, 31, 1805941. [47] Mohamed M. G., Lee C.-C., EL-Mahdy A. F. M., Lüder J., Yu M.-H., Li Z., Zhu Z., Chueh C.-C., Kuo S.-W., J. Mater. Chem. A, 2020,8, 11448. [48] Yu H., Wang D., J. Am. Chem. Soc.,2020, 142, 11013. [49] Yang C., Jiang K., Zheng Q., Li X., Mao H., Zhong W., Chen C., Sun B., Zheng H., Zhuang X., Reimer J. A., Liu Y., Zhang J., J. Am. Chem. Soc.,2021, 143, 17701. [50] Auras F., Ascherl L., Hakimioun A. H., Margraf J. T., Hanusch F. C., Reuter S., Bessinger D., Döblinger M., Hettstedt C., Karaghiosoff K., Herbert S., Knochel P., Clark T., Bein T., J. Am. Chem. Soc., 2016, 138, 16703. [51] Alahakoon S. B., Thompson C. M., Nguyen A. X., Occhialini G., McCandless G. T., Smaldone R. A., Chem. Commun., 2016,52, 2843. [52] Dalapati S., Addicoat M., Jin S., Sakurai T., Gao J., Xu H., Irle S., Seki S., Jiang D., Nat. Commun., 2015, 6, 7786. [53] Zhao Y., Dai W., Peng Y., Niu Z., Sun Q., Shan C., Yang H., Verma G., Wojtas L., Yuan D., Zhang Z., Dong H., Zhang X., Zhang B., Feng Y., Ma S., Angew. Chem. Int. Ed., 2020, 59, 4354. [54] Cai S.-L., Zhang K., Tan J.-B., Wang S., Zheng S.-R., Fan J., Yu Y., Zhang W.-G., Liu Y., ACS Macro Lett., 2016, 5, 1348. [55] Zhou T.-Y., Xu S.-Q., Wen Q., Pang Z.-F., Zhao X., J. Am. Chem. Soc., 2014, 136, 15885. [56] Jiang S.-Y., Gan S.-X., Zhang X., Li H., Qi Q.-Y., Cui F.-Z., Lu J., Zhao X., J. Am. Chem. Soc., 2019, 141, 14981. [57] Liang R.-R., Zhao X., Org. Chem. Front., 2018, 5, 3341. [58] Pang Z.-F., Xu S.-Q., Zhou T.-Y., Liang R.-R., Zhan T.-G., Zhao X., J. Am. Chem. Soc., 2016, 138, 4710. [59] Qian C., Xu S.-Q., Jiang G.-F., Zhan T.-G., Zhao X., Chem. Eur. J., 2016, 22, 17784. [60] Tian Y., Xu S.-Q., Qian C., Pang Z.-F., Jiang G.-F., Zhao X., Chem. Commun., 2016,52, 11704. [61] Xu S.-Q., Zhan T.-G., Wen Q., Pang Z.-F., Zhao X., ACS Macro Lett., 2016,5, 99. [62] Zhu Y., Wan S., Jin Y., Zhang W., J. Am. Chem. Soc., 2015, 137, 13772. [63] Cai S.-L., He Z.-H., Li X.-L., Zhang K., Zheng S.-R., Fan J., Liu Y., Zhang W.-G., Chem. Commun., 2019, 55, 13454. [64] Liu N., Shi L., Han X., Qi Q.-Y., Wu Z.-Q., Zhao X., Chin. Chem. Lett., 2020, 31, 386. [65] Han X.-H., Qi Q.-Y., Zhou Z.-B., Zhao X., Chin. J. Chem., 2020, 38, 1676. [66] Dey K., Pal M., Rout K. C., Kunjattu H, S., Das A., Mukherjee R., Kharul U. K., Banerjee R., J. Am. Chem. Soc., 2017, 139, 13083. [67] Fan H., Gu J., Meng H., Knebel A., Caro J., Angew. Chem. Int. Ed., 2018,57, 4083. [68] Li Y., Wu Q., Guo X., Zhang M., Chen B., Wei G., Li X., Li X., Li S., Ma L., Nat. Commun., 2020, 11, 599. [69] Li Y., Guo X., Li X., Zhang M., Jia Z., Deng Y., Tian Y., Li S., Ma L., Angew. Chem. Int. Ed., 2020, 59, 4168. [70] Feriante C. H., Jhulki S., Evans A. M., Dasari R. R., Slicker K., Dichtel W. R., Marder S. R., Adv. Mater., 2020, 32, 1905776. [71] Li X., Gao Q., Aneesh J., Xu H.-S., Chen Z., Tang W., Liu C., Shi X., Adarsh K. V., Lu Y., Loh K. P., Chem. Mater., 2018, 30, 5743 [72] Li J. H., Yu Z. W., Gao Z., Li J. Q., Tao Y., Xiao Y. X., Yin W. H., Fan Y. L., Jiang C., Sun L. J., Luo F., Inorg. Chem., 2019, 58, 10829. [73] Zhao Y., Zhao Y., Qiu J., Li Z., Wang H., Wang J., ACS Sustainable Chem. Eng., 2020, 8, 18413. [74] Chandra S., Kundu T., Dey K., Addicoat M., Heine T., Banerjee R., Chem. Mater., 2016, 28, 1489. [75] Liu L., Yin L., Cheng D., Zhao S., Zang H.-Y., Zhang N., Zhu G., Angew. Chem. Int. Ed., 2021, 60, 14875. [76] Yang J., Li L., Tang Z., Matter, 2021, 4, 2666. [77] Ji S.-L., Qian H.-L., Yang C.-X., Zhao X., Yan X.-P., ACS Appl. Mater. Interfaces, 2019, 11, 46219. [78] Sun Q., Aguila B., Perman J., Earl L. D., Abney C. W., Cheng Y., Wei H., Nguyen N., Wojtas L., Ma S., J. Am. Chem. Soc., 2017, 139, 2786. [79] Khayum M. A., Kandambeth S., Mitra S., Nair S. B., Das A., Nagane S. S., Mukherjee R., Banerjee R., Angew. Chem. Int. Ed., 2016, 55, 15604. [80] Huang N., Krishna R., Jiang D., J. Am. Chem. Soc., 2015, 137, 7079. [81] Liu C., Jiang Y., Nalaparaju A., Jiang J., Huang A., J. Mater. Chem. A, 2019, 7, 24205. [82] Xu H., Tao S., Jiang D., Nat. Mater., 2016, 15, 722. [83] Ma H., Liu B., Li B., Zhang L., Li Y.-G., Tan H.-Q., Zang H.-Y., Zhu G., J. Am. Chem. Soc., 2016,138, 5897. [84] Ding Y., Wang Y., Su Y., Yang Z., Liu J., Hua X., Wei H., Chin. Chem. Lett., 2020, 31, 193. [85] Xie Z., Wang B., Yang Z., Yang X., Yu X., Xing G., Zhang Y., Chen L.,Angew. Chem. Int. Ed., 2019, 58, 15742. [86] Sasmal H. S., Aiyappa H. B., Bhange S. N., Karak S., Halder A., Kurungot S., Banerjee R., Angew. Chem. Int. Ed., 2018, 57, 10894. [87] Fan C., Geng H., Wu H., Peng Q., Wang X., Shi B., Kong Y., Yin Z., Liu Y., Jiang Z., J. Mater. Chem. A, 2021,9, 17720. [88] Fan H., Peng M., Strauss I., Mundstock A., Meng H., Caro J., Nat. Commun., 2021, 12, 38. [89] Dong R., Zhang T., Feng X., Chem. Rev., 2018, 118, 6189. [90] Yuan S., Li X., Zhu J., Zhang G., Puyvelde P. V., Bruggen B. V. D., Chem. Soc. Rev., 2019,48, 2665. [91] Li X., Yadav P., Loh K. P., Chem. Soc. Rev., 2020, 49, 4835. [92] Colson J. W., Woll A. R., Mukherjee A., Levendorf M. P., Spitler E. L., Shields V. B., Spencer M. G., Park J., Dichtel W. R., Science, 2011, 332, 228. [93] Zhao S., Jiang C., Fan J., Hong S., Mei P., Yao R., Liu Y., Zhang S., Li H., Zhang H., Sun C., Guo Z., Shao P., Zhu Y., Zhang J., Guo L., Ma Y., Zhang J., Feng X., Wang F., Wu H., Wang B., Nat. Mater., 2021, 20, 1551. [94] Gao S., Li Z., Yang Y., Wang Z., Wang Y., Luo S., Yao K., Qiu J., Wang H., Cao L., Lai Z., Wang J., ACS Appl. Mater. Interfaces, 2021, 13, 36507. [95] Fan H., Peng M., Strauss I., Mundstock A., Meng H., Caro J., J. Am. Chem. Soc., 2020, 142, 6872. |
[1] | CAO Xiaohao, HE Yanjing, ZHANG Zhengqing, SUN Yuxiu, HAN Qi, GUO Yandong, ZHONG Chongli. Predicting of Covalent Organic Frameworks for Membrane-based Isobutene/1,3-Butadiene Separation: Combining Molecular Simulation and Machine Learning [J]. Chemical Research in Chinese Universities, 2022, 38(2): 421-427. |
[2] | YANG Miao, WANG Wenjing, SU Kongzhao, YUAN Daqiang. Dimeric Calix[4]resorcinarene-based Porous Organic Cages for CO2/CH4 Separation [J]. Chemical Research in Chinese Universities, 2022, 38(2): 428-432. |
[3] | MENG Weijia, LI Yang, ZHAO Ziqiang, SONG Xiaoyu, LU Fanli, CHEN Long. Ultrathin 2D Covalent Organic Framework Film Fabricated via Langmuir-Blodgett Method with a “Two-in-One” Type Monomer [J]. Chemical Research in Chinese Universities, 2022, 38(2): 440-445. |
[4] | HOU Bang, LI Ziping, KANG Xing, JIANG Hong, CUI Yong. Recent Advances of Covalent Organic Frameworks for Chiral Separation [J]. Chemical Research in Chinese Universities, 2022, 38(2): 350-355. |
[5] | LIU Shujing, GUO Jia. Two-dimensional Covalent Organic Frameworks: Intrinsic Synergy Promoting Photocatalytic Hydrogen Evolution [J]. Chemical Research in Chinese Universities, 2022, 38(2): 373-381. |
[6] | MA Hanze, WANG Shaoyu, REN Yanxiong, WANG Yuhan, ZHU Ziting, HE Guangwei, JIANG Zhongyi. Microstructure Manipulation of Covalent Organic Frameworks (COFs)-based Membrane for Efficient Separations [J]. Chemical Research in Chinese Universities, 2022, 38(2): 325-338. |
[7] | LI Jun, RONG Huazhen, CHEN Cong, LI Ziyi, ZUO Jiayu, WANG Wenjian, LIU Xinjian, GUAN Yixing, YANG Xiong, LIU Yingshu, ZOU Xiaoqin, ZHU Guangshan. Synthesis Optimization of SSZ-13 Zeolite Membranes by Dual Templates for N2/NO2 Separation [J]. Chemical Research in Chinese Universities, 2022, 38(1): 250-256. |
[8] | LI Hengbo, WANG Kuikui, WU Mingyan, HONG Maochun. A Cage-based Porous Metal-Organic Framework for Efficient C2H2 Storage and Separation [J]. Chemical Research in Chinese Universities, 2022, 38(1): 82-86. |
[9] | LI Jing-Hong, XIE Yi, ZHOU Mu-Yang, LIN Rui-Biao, CHEN Xiao-Ming. Microporous Zinc Formate for Efficient Separation of Acetylene over Carbon Dioxide [J]. Chemical Research in Chinese Universities, 2022, 38(1): 87-91. |
[10] | YUAN Mengjia, WANG Xia, CHEN Long, ZHANG Mingxing, HE Linwei, MA Fuyin, LIU Wei, WANG Shuao. Tailoring Pore Structure and Morphologies in Covalent Organic Frameworks for Xe/Kr Capture and Separation [J]. Chemical Research in Chinese Universities, 2021, 37(3): 679-685. |
[11] | YU Ruomeng, SHI Yongzheng, YANG Dongzhi. Oil-Water Separation Performance of Electrospray Reduced Graphene Oxide Microspheres with a Local Radially Aligned and Porous Structure [J]. Chemical Research in Chinese Universities, 2021, 37(3): 528-534. |
[12] | LI Xianglin, ZHANG Qingyang, LI Bin, LI Zhijun, ZHANG Ziqing, JING Liqiang. Improved Photocatalytic Activity of Porous In2O3 by co-Modifying Nanosized CuO and Ag with Synergistic Effects [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1116-1121. |
[13] | HU Keyan, XU Zian, LIU Yiting, HUANG Fuqiang. Reducing Packing Factor of ZnIn2S4 to Promote Photocatalytic Activity [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1102-1107. |
[14] | WANG Yan, LI Liping, LI Guangshe. Photocatalytic Hydrogen Evolution Performance for Hydroxyl-rich Porous Carbon Nitride [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1053-1058. |
[15] | ZHANG Pengfei, LIU Huan, LIANG Haiou, BAI Jie, LI Chunping. Enhanced Charge Separation of α-Bi2O3-BiOI Hollow Nanotube for Photodegradation Antibiotic Under Visible Light [J]. Chemical Research in Chinese Universities, 2020, 36(6): 1227-1233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||