Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2): 325-338.doi: 10.1007/s40242-022-1474-6
• Reviews • Previous Articles Next Articles
MA Hanze1,2, WANG Shaoyu1,2, REN Yanxiong1,2,3, LIANG Xu1,2, WANG Yuhan1,2, ZHU Ziting1,2, HE Guangwei1,2, JIANG Zhongyi1,2,3
Received:
2021-12-01
Revised:
2022-02-01
Online:
2022-04-01
Published:
2022-05-18
Contact:
HE Guangwei, JIANG Zhongyi
E-mail:guangwei@tju.edu.cn;zhyjiang@tju.edu.cn
Supported by:
MA Hanze, WANG Shaoyu, REN Yanxiong, WANG Yuhan, ZHU Ziting, HE Guangwei, JIANG Zhongyi. Microstructure Manipulation of Covalent Organic Frameworks (COFs)-based Membrane for Efficient Separations[J]. Chemical Research in Chinese Universities, 2022, 38(2): 325-338.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Sholl D. S., Lively R. P.,Nature, 2016, 532, 435. [2] Qian Q., Asinger P. A., Lee M. J., Han G., Mizrahi Rodriguez K., Lin S., Benedetti F. M., Wu A. X., Chi W. S., Smith Z. P.,Chem. Rev., 2020, 120, 8161. [3] Zou X., Zhu G.,Adv. Mater., 2017, 30, 1700750. [4] Chen W., Chen S., Liang T., Zhang Q., Fan Z., Yin H., Huang K. W., Zhang X., Lai Z., Sheng P.,Nat. Nanotechnol., 2018, 13, 345. [5] Chowdhury M. R., Steffes J., Huey B. D., McCutcheon J. R.,Science, 2018, 361, 682. [6] Pendergast M. M., Hoek E. M. V.,Energy Environ. Sci., 2011, 4, 1946. [7] You X., Wu H., Zhang R., Su Y., Cao L., Yu Q., Yuan J., Xiao K., He M., Jiang Z.,Nat. Commun., 2019, 10, 4160. [8] Shao P., Huang R. Y. M.,J. Membr. Sci., 2007, 287, 162. [9] Ong Y. K., Shi G. M., Le N. L., Tang Y. P., Zuo J., Nunes S. P., Chung T. S.,Prog. Polym. Sci., 2016, 57, 1. [10] Robeson L. M.,J. Membr. Sci., 2008, 320, 390. [11] Wu Y. Z., Xing N., Li S., Yang L. X., Ren Y. X., Liu Y. T., Liang X., Guo Z. Y., Wang H. J., Wu H., Jiang Z. Y.,J. Mater. Chem. A, 2021, 9, 2126. [12] Wang H., Wang M., Liang X., Yuan J., Yang H., Wang S., Ren Y., Wu H., Pan F., Jiang Z.,Chem. Soc. Rev., 2021, 50, 5468. [13] Cote A. P., Benin A. I., Ockwig N. W., O'Keeffe M., Matzger A. J., Yaghi O. M.,Science, 2005, 310, 1166. [14] Uribe-Romo F. J., Hunt J. R., Furukawa H., Klock C., O'Keeffe M., Yaghi O. M.,J. Am. Chem. Soc., 2009, 131, 4570. [15] Ma T., Kapustin E. A., Yin S. X., Liang L., Zhou Z., Niu J., Li L. H., Wang Y., Su J., Li J., Wang X., Wang W. D., Wang W., Sun J., Yaghi O. M.,Science, 2018, 361, 48. [16] Uribe-Romo F. J., Doonan C. J., Furukawa H., Oisaki K., Yaghi O. M., J. Am. Chem. Soc., 2011, 133, 11478. [17] Li Y., Wang C., Ma S. J., Zhang H. Y., Ou J. J., Wei Y. M., Ye M. L.,ACS Appl. Mater. Interfaces, 2019, 11, 11706. [18] Rao M. R., Fang Y., de Feyter S., Perepichka D. F.,J. Am. Chem. Soc., 2017, 139, 2421. [19] Kuhn P., Antonietti M., Thomas A.,Angew. Chem. Int. Ed., 2008, 47, 3450. [20] Wei S., Zhang F., Zhang W., Qiang P., Yu K., Fu X., Wu D., Bi S., Zhang F.,J. Am. Chem. Soc., 2019, 141, 14272. [21] Yuan S., Li X., Zhu J., Zhang G., van Puyvelde P., van der Bruggen B.,Chem. Soc. Rev., 2019, 48, 2665. [22] Zhang C., Wu B. H., Ma M. Q., Wang Z., Xu Z. K.,Chem. Soc. Rev., 2019, 48, 3811. [23] Xiong S. H., Li L., Dong L., Tang J. T., Yu G. P., Pan C. Y.,Journal of Co2 Utilization, 2020, 41, 101224. [24] He G. W., Zhang R. N., Jiang Z. Y.,Accounts of Materials Research, 2021, 2, 630. [25] Zhang S. L., Zhao S., Jing X. C., Niu Z. R., Feng X.,Organic Chemistry Frontiers, 2021, 8, 3943. [26] Fan H. W., Gu J. H., Meng H., Knebel A., Caro J.,Angew. Chem. Int. Ed., 2018, 57, 4083. [27] Shen J. L., Zhang R. N., Su Y. L., Shi B. B., You X. D., Guo W. X., Ma Y., Yuan J. Q., Wang F., Jiang Z. Y.,J. Mater. Chem. A, 2019, 7, 18063. [28] Khan N. A., Zhang R., Wu H., Shen J., Yuan J., Fan C., Cao L., Olson M. A., Jiang Z.,J. Am. Chem. Soc., 2020, 142, 13450. [29] Zhou W., Wei M. J., Zhang X., Xu F., Wang Y.,ACS Appl. Mater. Interfaces, 2019, 11, 16847. [30] Wang R., Wei M. J., Wang Y.,J. Membr. Sci., 2020, 604, 118090. [31] Kandambeth S., Biswal B. P., Chaudhari H. D., Rout K. C., Kunjattu H. S., Mitra S., Karak S., Das A., Mukherjee R., Kharul U. K., Banerjee R.,Adv. Mater., 2017, 29, 1603945. [32] Shinde D. B., Sheng G., Li X., Ostwal M., Emwas A. H., Huang K. W., Lai Z.,J. Am. Chem. Soc., 2018, 140, 14342. [33] Wang H. J., Chen L., Yang H., Wang M. D., Yang L. X., Du H. Y., Cao C. L., Ren Y. X., Wu Y. Z., Pan F. S., Jiang Z. Y.,J. Mater. Chem. A, 2019, 7, 20317. [34] Yang H., Yang L. X., Wang H. J., Xu Z., Zhao Y. M., Luo Y., Nasir N., Song Y. M., Wu H., Pan F. S., Jiang Z. Y.,Nat. Commun., 2019, 10, 2101. [35] Kang Z. X., Peng Y. W., Qian Y. H., Yuan D. Q., Addicoat M. A., Heine T., Hu Z. G., Tee L., Guo Z. G., Zhao D.,Chem. Mater., 2016, 28, 1277. [36] Fan H., Mundstock A., Feldhoff A., Knebel A., Gu J., Meng H., Caro J.,J. Am. Chem. Soc., 2018, 140, 10094. [37] Yang L. X., Yang H., Wu H., Zhang L. L., Ma H. Z., Liu Y. T., Wu Y. Z., Ren Y. X., Wu X. Y., Jiang Z. Y.,J. Mater. Chem. A, 2021, 9, 12636. [38] Geng K., He T., Liu R., Tan K. T., Li Z., Tao S., Gong Y., Jiang Q., Jiang D.,Chem. Rev., 2020, 120, 8814. [39] Yaghi O. M.,ACS Cent. Sci., 2019, 5, 1295. [40] Dey K., Pal M., Rout K. C., Kunjattu H. S., Das A., Mukherjee R., Kharul U. K., Banerjee R.,J. Am. Chem. Soc., 2017, 139, 13083. [41] Cao C. L., Wang H. J., Wang M. D., Liu Y., Zhang Z. M., Liang S. W., Wang Y. H., Pan F. S., Jiang Z. Y.,J. Membr. Sci., 2021, 630, 119319. [42] Liu J. T., Wang S. F., Huang T. F., Manchanda P., Abou-Hamad E., Nunes S. P.,Sci. Adv., 2020, 6, eabb3188. [43] Wang Z. F., Zhang S. N., Chen Y., Zhang Z. J., Ma S. Q.,Chem. Soc. Rev., 2020, 49, 708. [44] Yang H., Wu H., Zhao Y. M., Wang M. D., Song Y. M., Cheng X. X., Wang H. J., Cao X. Z., Pan F. S., Jiang Z. Y.,J. Mater. Chem. A., 2020, 8, 19328. [45] Ying Y. P., Tong M. M., Ning S. C., Ravi S. K., Peh S. B., Tan S. C., Pennycook S. J., Zhao D.,J. Am. Chem. Soc., 2020, 142, 4472. [46] Wang P. Y., Peng Y., Zhu C. Y., Yao R., Song H. L., Kun L., Yang W. S.,Angew. Chem. Int. Ed., 2021, 60, 19047. [47] Zhao Y. J., Liu P., Ying Y. P., Wei K. P., Zhao D., Liu D. H.,J. Membr. Sci., 2021, 632, 119326. [48] Li Y., Wu Q., Guo X., Zhang M., Chen B., Wei G., Li X., Li X., Li S., Ma L.,Nat. Commun., 2020, 11, 599. [49] Zhang Y. Q., Guo J., Han G., Bai Y. P., Ge Q. C., Ma J., Lau C. H., Shao L.,Sci. Adv., 2021, 7, eabe8706. [50] Fan H., Peng M., Strauss I., Mundstock A., Meng H., Caro J.,Nat. Commun., 2021, 12, 38. [51] Kong F. X., Yue L. P., Yang Z. Y., Sun G. D., Chen J. F.,ACS Appl. Mater. Interfaces, 2021, 13, 21379. [52] Liu C. Y., Jiang Y. Z., Nalaparaju A., Jiang J. W., Huang A. S.,J. Mater. Chem. A, 2019, 7, 24205. [53] Bing S. S., Xian W. P., Chen S. F., Song Y. P., Hou L. X., Liu X. L., Ma S. Q., Sun Q., Zhang L.,Matter, 2021, 4, 2027. [54] Hou L. X., Xian W. P., Bing S. S., Song Y. P., Sun Q., Zhang L., Ma S. Q.,Adv. Funct. Mater., 2021, 31, 2009970. [55] Yan T. A., Lan Y. S., Tong M. M., Zhong C. L.,Acs Sustainable Chemistry& Engineering, 2019, 7, 1220. [56] Aksu G. O., Daglar H., Altintas C., Keskin S.,J. Phys. Chem. C Nanomater Interfaces, 2020, 124, 22577. [57] Xu F., Wei M. J., Zhang X., Wang Y.,ACS Appl. Mater. Interfaces, 2019, 11, 45246. [58] Xu F., Wei M. J., Wang Y.,Sep. Purif. Technol., 2021, 257, 117937. [59] Sheng F. M., Wu B., Li X. Y., Xu T. T., Shehzad M. A., Wang X. X., Ge L., Wang H. T., Xu T. W.,Adv. Mater., 2021, 33, 2104404. [60] Chen T. F., Li B., Huang W. B., Lin C. H., Li G. S., Ren H., Wu Y., Chen S. H., Zhang W. X., Ma H. P.,Sep. Purif. Technol., 2021, 256, 117787. [61] Forrest L. R., Kramer R., Ziegler C.,Biochimica Et Biophysica Acta:Bioenergetics, 2011, 1807, 167. [62] Cao L., He X. Y., Jiang Z. Y., Li X. Q., Li Y. F., Ren Y. X., Yang L. X., Wu H.,Chem. Soc. Rev., 2017, 46, 6725. [63] Liao J. Y., Wang Z., Gao C. Y., Wang M., Yan K., Xie X. M., Zhao S., Wang J. X., Wang S. C.,J. Mater. Chem. A, 2015, 3, 16746. [64] Guo Z., Jiang H. F., Wu H., Zhang L. L., Song S. Q., Chen Y., Zheng C. Y., Ren Y. X., Zhao R., Li Y. H., Yin Y., Guiver M. D., Jiang Z. Y.,Angew. Chem. Int. Ed., 2021, 60, 27078. [65] Baker R. W., Low B. T.,Macromolecules, 2014, 47, 6999. [66] Li H., Song Z. N., Zhang X. J., Huang Y., Li S. G., Mao Y. T., Ploehn H. J., Bao Y., Yu M.,Science, 2013, 342, 95. [67] Ding L., Wei Y., Li L., Zhang T., Wang H., Xue J., Ding L. X., Wang S., Caro J., Gogotsi Y.,Nat. Commun., 2018, 9, 155. [68] Li J., Zhou X., Wang J., Li X. F.,Industrial& Engineering Chemistry Research, 2019, 58, 15394. [69] Li G., Zhang K., Tsuru T.,ACS Appl. Mater. Interfaces, 2017, 9, 8433 [70] Matsumoto M., Valentino L., Stiehl G. M., Balch H. B., Corcos A. R., Wang F., Ralph D. C., Marinas B. J., Dichtel W. R.,Chem, 2018, 4, 308 [71] Valentino L., Matsumoto M., Dichtel W. R., Marinas B. J.,Environmental Science& Technology, 2017, 51, 14352. [72] Ying Y. P., Peh S. B., Yang H., Yang Z. Q., Zhao D.,Adv. Mater., 2021, 2104946. [73] Li C., Li S. X., Zhang J. M., Yang C. R., Su B. W., Han L. H., Gao X. L.,J. Membr. Sci., 2020, 604, 118065. [74] Zhang T. H., Li P. Y., Ding S. P., Wang X. F.,Sep. Purif. Technol., 2021, 270, 118802. [75] Jiang Y. X., Li S. X., Su J. H., Lv X. H., Liu S. X., Su B. W.,J. Membr. Sci., 2021, 635, 119523. [76] Yuan J. Q., Wu M. Y., Wu H., Liu Y. A., You X. D., Zhang R. N., Su Y. L., Yang H., Shen J. L., Jiang Z. Y.,J. Mater. Chem. A, 2019, 7, 25641. [77] Ying Y. P., Yang Z. Q., Shi D. C., Peh S. B., Wang Y. X., Yu X., Yang H., Chai K. G., Zhao D.,J. Membr. Sci., 2021, 632, 119384. [78] Fenton J. L., Burke D. W., Qian D. W., de la Cruz M. O., Dichtel W. R., J. Am. Chem. Soc., 2021, 143, 1466. [79] Liu J. T., Han G., Zhao D. L., Lu K. J., Gao J., Chung T. S.,Sci. Adv., 2020, 6, eabb1110. [80] Duong P. H. H., Shin Y. K., Kuehl V. A., Afroz M. M., Hoberg J. O., Parkinson B., van Duin A. C. T., Li-Oakey K. D.,ACS Appl. Mater. Interfaces, 2021, 13, 42164. [81] Wu X. W., Han X., Liu Y. H., Liu Y., Cui Y.,J. Am. Chem. Soc., 2018, 140, 16124. [82] Emmerling S. T., Schuldt R., Bette S., Yao L., Dinnebier R. E., Kastner J., Lotsch B. V.,J. Am. Chem. Soc., 2021, 143, 15711. [83] Das S., Ben T., Qiu S. L., Valtchev V.,ACS Appl. Mater. Interfaces, 2020, 12, 52899. [84] Gao Q. W., Zhu Y. D., Ruan Y., Zhang Y. M., Zhu W., Lu X. H., Lu L. H.,Langmuir, 2017, 33, 11467. [85] Huang X. Z., Wu J., Zhu Y. D., Zhang Y. M., Feng X., Lu X. H.,Chin. J. Chem. Eng., 2017, 25, 1552. [86] Wang T., Zhang Y. L., Shi X. P., Wu L. G., Zhang X. Y., Zhang S. Q.,Chem. Eng. Sci., 2019, 201, 191. [87] Li W. D., Pan F. S., Song Y. M., Wang M. D., Wang H. J., Walker S., Wu H., Jiang Z. Y.,Chin. J. Chem. Eng., 2017, 25, 1563. [88] Zhao S., Jiang C., Fan J., Hong S., Mei P., Yao R., Liu Y., Zhang S., Li H., Zhang H., Sun C., Guo Z., Shao P., Zhu Y., Zhang J., Guo L., Ma Y., Zhang J., Feng X., Wang F., Wu H., Wang B.,Nat. Mater., 2021, 20, 1551. [89] He X. Y., Yang Y., Wu H., He G. W., Xu Z. X., Kong Y., Cao L., Shi B. B., Zhang Z. J., Tongsh C., Jiao K., Zhu K. Y., Jiang Z. Y.,Adv. Mater., 2020, 32, 2001284. [90] Wu Y. Z., Guo Z. Y., Wu H., Zhu K. Y., Yang L. X., Ren Y. X., Liu Y. T., Wu X. Y., Zhao R., Khan N. A., Ahmad N. M., Younas M., Jiang Z. Y.,J. Membr. Sci., 2020, 609, 118215. [91] Galizia M., Chi W. S., Smith Z. P., Merkel T. C., Baker R. W., Freeman B. D.,Macromolecules, 2017, 50, 7809. [92] El-Kaderi H. M., Hunt J. R., Mendoza-Cortes J. L., Cote A. P., Taylor R. E., O'Keeffe M., Yaghi O. M.,Science, 2007, 316, 268. [93] Dogru M., Sonnauer A., Gavryushin A., Knochel P., Bein T.,Chem. Commun., 2011, 47, 1707. [94] Du Y., Mao K. M., Kamakoti P., Wooler B., Cundy S., Li Q. C., Ravikovitch P., Calabro D.,J. Mater. Chem. A, 2013, 1, 13171. [95] DeBlase C. R., Dichtel W. R.,Macromolecules, 2016, 49, 5297. [96] Kandambeth S., Mallick A., Lukose B., Mane M. V., Heine T., Banerjee R.,J. Am. Chem. Soc., 2012, 134, 19524. [97] Pan F. S., Guo W. X., Su Y. L., Khan N. A., Yang H., Jiang Z. Y.,Sep. Purif. Technol., 2019, 215, 582. [98] Yang H., Wu H., Xu Z., Mu B. W., Lin Z. X., Cheng X. X., Liu G. H., Pan F. S., Cao X. Z., Jiang Z. Y.,J. Membr. Sci., 2018, 561, 79. [99] Jiang Y. Z., Liu C. Y., Li Y. H., Huang A. S.,J. Membr. Sci., 2019, 587, 117177. [100] Fan H. W., Mundstock A., Gu J. H., Meng H., Caro J.,J. Mater. Chem. A, 2018, 6, 16849. [101] Qian C., Qi Q. Y., Jiang G. F., Cui F. Z., Tian Y., Zhao X.,J. Am. Chem. Soc., 2017, 139, 6736. [102] Ding H. M., Mal A., Wang C.,Materials Chemistry Frontiers, 2020, 4, 113. [103] Segura J. L., Royuela S., Ramos M. M.,Chem. Soc. Rev., 2019, 48, 3903. [104] Waller P. J., Lyle S. J., Popp T. M. O., Diercks C. S., Reimer J. A., Yaghi O. M.,J. Am. Chem. Soc., 2016, 138, 15519. [105] Li X. L., Zhang C. L., Cai S. L., Lei X. H., Altoe V., Hong F., Urban J. J., Ciston J., Chan E. M., Liu Y.,Nat. Commun., 2018, 9, 2998. [106] Kandambeth S., Venkatesh V., Shinde D. B., Kumari S., Halder A., Verma S., Banerjee R.,Nat. Commun., 2015, 6, 6786. [107] Kandambeth S., Shinde D. B., Panda M. K., Lukose B., Heine T., Banerjee R.,Angew. Chem. Int. Ed., 2013, 52, 13052. [108] Chen H. W., Tu H. Y., Hu C. J., Liu Y., Dong D. R., Sun Y. F., Dai Y. F., Wang S. L., Qian H., Lin Z. Y., Chen L. W.,J. Am. Chem. Soc., 2018, 140, 896. [109] Zhang P. H., Wang Z. F., Cheng P., Chen Y., Zhang Z. J.,Coord. Chem. Rev., 2021, 438, 213873. [110] Goh K., Jiang W. C., Karahan H. E., Zhai S. L., Wei L., Yu D. S., Fane A. G., Wang R., Chen Y.,Adv. Funct. Mater., 2015, 25, 7348. [111] Yeh C. N., Raidongia K., Shao J. J., Yang Q. H., Huang J. X.,Nature Chemistry, 2015, 7, 166. [112] Halder A., Karak S., Addicoat M., Bera S., Chakraborty A., Kunjattu S. H., Pachfule P., Heine T., Banerjee R.,Angew. Chem. Int. Ed., 2018, 57, 5797. [113] Li L., Lu F., Xue R., Ma B. L., Li Q., Wu N., Liu H., Yao W. Q., Guo H., Yang W.,ACS Appl. Mater. Interfaces, 2019, 11, 26355. [114] Zhao Y. L., Zhao Y., Wu C. L., Qiu J. K., Wang H. Y., Li Z. Y., Zhao Y., Wang J. J.,Chemistry:A European Journal, 2021, 27, 9391. [115] Ying Y. P., Liu D. H., Ma J., Tong M. M., Zhang W. X., Huang H. L., Yang Q. Y., Zhong C. L.,J. Mater. Chem. A, 2016, 4, 13444. [116] Sui X., Yuan Z. W., Liu C., Wei L., Xu M. Y., Liu F., Montoya A., Goh K., Chen Y.,J. Mater. Chem. A, 2020, 8, 9713. [117] Tang Y. C., Feng S., Fan L. L., Pang J., Fan W. D., Kong G. D., Kang Z. X., Sun D. F.,Sep. Purif. Technol., 2019, 223, 10. [118] Khan N. A., Yuan J. Q., Wu H., Cao L., Zhang R. N., Liu Y. A., Li L. S., Rahman A. U., Kasher R., Jiang Z. Y.,ACS Appl. Mater. Interfaces, 2019, 11, 28978. [119] Kong G. D., Pang J., Tang Y. C., Fan L. L., Sun H. X., Wang R. M., Feng S., Feng Y., Fan W. D., Kang W. P., Guo H. L., Kang Z. X., Sun D. F., J. Mater. Chem. A, 2019, 7, 24301. |
[1] | BU Ran, LU Yingying, ZHANG Bing. Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1151-1162. |
[2] | SONG Jialong, WANG Zitao, LIU Yaozu, TUO Chao, WANG Yujie, FANG Qianrong, and QIU Shilun. A Three-dimensional Covalent Organic Framework for CO2 Uptake and Dyes Adsorption [J]. Chemical Research in Chinese Universities, 2022, 38(3): 834-837. |
[3] | CAO Xiaohao, HE Yanjing, ZHANG Zhengqing, SUN Yuxiu, HAN Qi, GUO Yandong, ZHONG Chongli. Predicting of Covalent Organic Frameworks for Membrane-based Isobutene/1,3-Butadiene Separation: Combining Molecular Simulation and Machine Learning [J]. Chemical Research in Chinese Universities, 2022, 38(2): 421-427. |
[4] | CUI Yumeng, MIAO Zhuang, LIU Qi, JIN Fenchun, ZHAI Yufeng, ZHANG Lingyan, WANG Wenli, WANG Ke, LIU Guiyan, ZENG Yongfei. Construction of a Three-dimensional Covalent Organic Framework via the Linker Exchange Strategy [J]. Chemical Research in Chinese Universities, 2022, 38(2): 402-408. |
[5] | WANG Guangbo, XIE Kehui, ZHU Fucheng, KAN Jinglan, LI Sha, GENG Yan, DONG Yubin. Construction of Tetrathiafulvalene-based Covalent Organic Frameworks for Superior Iodine Capture [J]. Chemical Research in Chinese Universities, 2022, 38(2): 409-414. |
[6] | MENG Weijia, LI Yang, ZHAO Ziqiang, SONG Xiaoyu, LU Fanli, CHEN Long. Ultrathin 2D Covalent Organic Framework Film Fabricated via Langmuir-Blodgett Method with a “Two-in-One” Type Monomer [J]. Chemical Research in Chinese Universities, 2022, 38(2): 440-445. |
[7] | HOU Bang, LI Ziping, KANG Xing, JIANG Hong, CUI Yong. Recent Advances of Covalent Organic Frameworks for Chiral Separation [J]. Chemical Research in Chinese Universities, 2022, 38(2): 350-355. |
[8] | JIA Shuping, ZHAO Peng, LIU Qi, CHEN Yao, CHENG Peng, YANG Yi, ZHANG Zhenjie. Stepwise Fabrication of Proton-conducting Covalent Organic Frameworks for Hydrogen Fuel Cell Applications [J]. Chemical Research in Chinese Universities, 2022, 38(2): 461-467. |
[9] | LIU Shujing, GUO Jia. Two-dimensional Covalent Organic Frameworks: Intrinsic Synergy Promoting Photocatalytic Hydrogen Evolution [J]. Chemical Research in Chinese Universities, 2022, 38(2): 373-381. |
[10] | WANG Lu, WANG Dong. Two-dimensional Covalent Organic Frameworks: Tessellation by Synthetic Art [J]. Chemical Research in Chinese Universities, 2022, 38(2): 265-274. |
[11] | LI Jiali, ZHANG Zhenwei, JIA Ji, LIU Xiaoming. Covalent Organic Frameworks for Photocatalytic Organic Transformation [J]. Chemical Research in Chinese Universities, 2022, 38(2): 275-289. |
[12] | DI Zhengyi, MAO Yining, YUAN Heng, ZHOU Yan, JIN Jun, LI Cheng-Peng. Covalent Organic Frameworks(COFs) for Sequestration of99TcO4– [J]. Chemical Research in Chinese Universities, 2022, 38(2): 290-295. |
[13] | FU Yu, LI Yinhui, ZHANG Wenxiang, LUO Chen, JIANG Lingchang, MA Heping. Ionic Covalent Organic Framework: What Does the Unique Ionic Site Bring to Us? [J]. Chemical Research in Chinese Universities, 2022, 38(2): 296-309. |
[14] | XU Kai, HUANG Ning. Recent Advances of Covalent Organic Frameworks in Chemical Sensing [J]. Chemical Research in Chinese Universities, 2022, 38(2): 339-349. |
[15] | DING Huimin, MAL Arindam, WANG Cheng. Energy Storage in Covalent Organic Frameworks: From Design Principles to Device Integration [J]. Chemical Research in Chinese Universities, 2022, 38(2): 356-363. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||