Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6): 1158-1175.doi: 10.1007/s40242-021-1362-5
• Reviews • Previous Articles Next Articles
QI Qi1,2, XU Lekai3, DU Jiang1,2, YANG Nailiang3,4, WANG Dan3,4
Received:
2021-09-10
Revised:
2021-10-09
Online:
2021-11-23
Published:
2021-10-25
Contact:
DU Jiang, YANG Nailiang, WANG Dan
E-mail:dj@zzu.edu.cn;nlyang@ipe.ac.cn;danwang@ipe.ac.cn
Supported by:
QI Qi, XU Lekai, DU Jiang, YANG Nailiang, WANG Dan. Fabrication and Application of Graphdiyne-based Heterogeneous Compositions: from the View of Interaction[J]. Chemical Research in Chinese Universities, 2021, 37(6): 1158-1175.
[1] Baughman R. H., Eckhardt H., Kertesz M., J. Chem. Phys., 1987, 87, 6687 [2] Liu C., Han X., Shi R., Qi S., Chen S., Xu L., Xu J., Mater. Chem. Front., 2021, 5, 6413 [3] Huang C., Li Y., Wang N., Xue Y., Zuo Z., Liu H., Li Y., Chem. Rev., 2018, 118, 7744 [4] Gao X., Liu H., Wang D., Zhang J., Chem. Soc. Rev., 2019, 48, 908 [5] Li J., Wan C., Wang C., Zhang H., Chen X., Chem. Res. Chinese Universities, 2020, 36(3), 622 [6] Yang C., Wang H., Xu Q., Chem. Res. Chinese Universities, 2020, 36(1), 10 [7] Li Y., Chem. Res. Chinese Universities, 2020, 36(1), 147 [8] Guo D., Fan Z., Du L., Fu X., Dong C., Xie W., Zhao D., Wang M., Yuan M., Mater. Chem. Front., 2019, 3, 821 [9] Yu H., Xue Y., Li Y., Adv. Mater., 2019, 31, 1803101 [10] Xi J., Nakamura Y., Zhao T., Wang D., Shuai Z., Acta Phys-Chim. Sin., 2018, 34, 961 [11] Bu H., Zhao M., Zhang H., Wang X., Xi Y., Wang Z., J. Phys. Chem. A, 2012, 116, 3934 [12] Pei Y., Physica B Condens. Matter., 2012, 407, 4436 [13] Li G., Li Y., Liu H., Guo Y., Li Y., Zhu B., Chem. Commun., 2010, 46, 3256 [14] Cranford S. W., Brommer D. B., Buehler M. J., Nanoscale, 2012, 4, 7797 [15] Narita N., Nagai S., Suzuki S., Nakao K., Phys. Rev. B, 1998, 58, 11009 [16] Wang F., Jin W., Xiong Z., Liu H., Mater. Chem. Front., 2021, 5, 5400 [17] Huang C., Li Y., Acta Phys-Chim. Sin., 2016, 32, 1314 [18] Zhang H., Zhao X., Zhang M., Luo Y., Li G., Zhao M., J. Phys. D Appl. Phys., 2013, 46, 495307 [19] Peng Q., Dearden A. K., Crean J., Han L., Liu S., Wen X., De S., Nanotechnol. Sci. Appl., 2014, 7, 1 [20] Roman R. E., Cranford S. W., Adv. Eng. Mater., 2014, 16, 862 [21] Chi B., Liu Y., Li X., Xu J., Qin X., Sun C., Bai C., Zhao X., J. Mol. Model., 2015, 21, 154 [22] Ghorbanzadeh Ahangari M., Physica E Low Dimens. Syst. Nanostruct., 2015, 66, 140 [23] León A., Pacheco M., Chem. Phys. Lett., 2015, 620, 67 [24] Chi B., Liu Y., Xu J., Qin X., Sun C., Bai C., Liu Y., Zhao X., Li X., Acta. Phys:Chim. Sin., 2016, 65, 133101 [25] Puigdollers A. R., Alonso G., Gamallo P., Carbon, 2016, 96, 879 [26] Zhao Y., Zhang L., Qi J., Jin Q., Lin K., Wang D., Acta Phys-Chim. Sin., 2018, 34, 1048 [27] Malko D., Neiss C., Viñes F., Görling A., Phys. Rev. Lett., 2012, 108, 086804 [28] Van Miert G., Juričić V., Morais Smith C., Phys. Rev. B, 2014, 90, 195414 [29] Qin X., Liu Y., Chi B., Zhao X., Li X., Nanoscale, 2016, 8, 15223 [30] Long M., Tang L., Wang D., Li Y., Shuai Z., ACS Nano., 2011, 5, 2593 [31] Koo J., Park M., Hwang S., Huang B., Jang B., Kwon Y., Lee H., Phys. Chem. Chem. Phys., 2014, 16, 8935 [32] Behzad S., The Eur. Phys. J. B, 2016, 89, 112 [33] Luo G., Qian X., Liu H., Qin R., Zhou J., Li L., Gao Z., Wang E., Mei W., Lu J., Li Y., Nagase S., Phys. Rev. B., 2011, 84, 075439 [34] Hu M., Pan Y., Luo K., He J., Yu D., Xu B., Carbon, 2015, 91, 518 [35] Chopra S., RSC Adv., 2016, 6, 89934 [36] Ma S., Zhang M., Sun L., Zhang K., Carbon, 2016, 99, 547 [37] Owens F. J., Solid State Commun., 2017, 250, 75 [38] Hybertsen M. S., Louie S. G., Phys. Rev. B, 1986, 34, 5390 [39] Spataru C. D., Ismail-Beigi S., Benedict L. X., Louie S. G., Phys. Rev. Lett., 2004, 92, 077402 [40] Yang L., Spataru C. D., Louie S. G., Chou M. Y., Phys. Rev. B, 2007, 75, 201304 [41] Yue Q., Chang S., Kang J., Qin S., Li J., J. Phys. Chem. C., 2013, 117, 14804 [42] Koo J., Huang B., Lee H., Kim G., Nam J., Kwon Y., Lee H., J. Phys. Chem. C., 2014, 118, 2463 [43] Lin Z., Wei Q., Zhu X., Carbon, 2014, 66, 504 [44] Jalili S., Houshmand F., Schofield J., Appl. Phys. A, 2015, 119, 571 [45] Sheka E., Adv. Quantum Chem., 2015, 70, 111 [46] Sun L., Jiang P. H., Liu H. J., Fan D. D., Liang J. H., Wei J., Cheng L., Zhang J., Shi J., Carbon, 2015, 90, 255 [47] Zheng Q., Luo G., Liu Q., Quhe R., Zheng J., Tang K., Gao Z., Nagase S., Lu J., Nanoscale, 2012, 4, 3990 [48] Cui H., Sheng X., Yan Q., Zheng Q., Su G., Phys. Chem. Chem. Phys., 2013, 15, 8179 [49] He J., Ma S. Y., Zhou P., Zhang C. X., He C., Sun L. Z., J. Phys. Chem. C, 2012, 116, 26313 [50] Ivanovskii A. L., Enyashin A. N., Russ. Chem. Rev., 2013, 82, 735 [51] Li Y., Dai H., Chem. Soc. Rev., 2014, 43, 5257 [52] Liu J., Song P., Ning Z., Xu W., Electrocatalysis, 2015, 6, 132 [53] Leenaerts O., Partoens B., Peeters F. M., Appl. Phys. Lett., 2013, 103, 013105 [54] Luo G., Zheng Q., Mei W., Lu J., Nagase S., J. Phys. Chem. C, 2013, 117, 13072 [55] Dong B., Guo H., Liu Z., Yang T., Tao P., Tang S., Saito R., Zhang Z., Carbon, 2018, 131, 223 [56] Shojaei F., Mortazavi B., Appl. Surf. Sci., 2021, 557, 149699 [57] Wang J., Deng S., Liu Z., Liu Z., Natl. Sci. Rev., 2015, 2, 22 [58] Srinivasu K., Ghosh S. K., J. Phys. Chem. C, 2012, 116, 5951 [59] Zhang K., Zhang L., Chen X., He X., Wang X., Dong S., Gu L., Liu Z., Huang C., Cui G., ACS Appl. Mater. Interfaces, 2013, 5, 3677 [60] Zhang S., Du H., He J., Huang C., Liu H., Cui G., Li Y., ACS Appl. Mater. Interfaces, 2016, 8, 8467 [61] Lv Q., Si W., Yang Z., Wang N., Tu Z., Yi Y., Huang C., Jiang L., Zhang M., He J., Long Y., ACS Appl. Mater. Interfaces, 2017, 9, 29744 [62] Zhang M., Guan Z., Yang Z., Hu X., Wang X., Long Y., Huang C., Chem. Mater., 2020, 32, 9001 [63] Liu B., Xu L., Zhao Y., Du J., Yang N., Wang D., J. Mater. Chem. A, 2021, 9, 19298 [64] Gu J., Magagula S., Zhao J., Chen Z., Small Methods, 2019, 3, 1800550 [65] Jiao Y., Du A., Smith S. C., Zhu Z., Qiao S. Z., J. Mater. Chem. A, 2015, 3, 6767 [66] Zhao Y., Wan J., Yao H., Zhang L., Lin K., Wang L., Yang N., Liu D., Song L., Zhu J., Gu L., Liu L., Zhao H., Li Y., Wang D., Nat. Chem., 2018, 10, 924 [67] Zhao Y., Yang N., Yao H., Liu D., Song L., Zhu J., Li S., Gu L., Lin K., Wang D., J. Am. Chem. Soc., 2019, 141, 7240 [68] Zhao Y., Yang N., Wang C., Song L., Yu R., Wang D., APL Mater., 2021, 9, 071102 [69] Huang H., Liu B., Wang D., Cui R., Guo X., Li Y., Zuo S., Yin Z., Wang H., Zhang J., Yuan H., Zheng L., Sun B., Nano Res., 2021, doi.org/10.1007/s12274-021-3522-9 [70] Grüner B., Plešek J., Báča J., Francois Dozol J., Lamare V., Císařová I., Bělohradský M., Čáslavský J., New J. Chem., 2002, 26, 867 [71] Harmon B. W., Ensor D. D., Delmau L. H., Moyer B. A., Solvent Extr. Ion Exch., 2007, 25, 373 [72] Yuan T., Xiong S., Shen X., Angew. Chem. Int. Ed., 2020, 59, 17719 [73] Liu R., Zhou J., Gao X., Li J., Xie Z., Li Z., Zhang S., Tong L., Zhang J., Liu Z., Adv. Electron. Mater., 2017, 3, 1700122 [74] Li Y., Huang H., Cui R., Wang D., Yin Z., Wang D., Zheng L., Zhang J., Zhao Y., Yuan H., Dong J., Guo X., Sun B., Sens. Actuators B Chem., 2021, 332, 129519 [75] Sun M., Wu T., Xue Y., Dougherty A. W., Huang B., Li Y., Yan C., Nano Energy, 2019, 62, 754 [76] Lu Z., Li S., Lv P., He C., Ma D., Yang Z., Appl. Surf. Sci., 2016, 360, 1 [77] Mashhadzadeh A. H., Vahedi A. M., Ardjmand M., Ahangari M. G., Superlattices Microstruct., 2016, 100, 1094 [78] Xue Y., Huang B., Yi Y., Guo Y., Zuo Z., Li Y., Jia Z., Liu H., Li Y., Nat. Commun., 2018, 9, 1460 [79] Yin X., Wang H., Tang S., Lu X., Shu M., Si R., Lu T., Angew. Chem. Int. Ed., 2018, 57, 9382 [80] Yu H., Hui L., Xue Y., Liu Y., Fang Y., Xing C., Zhang C., Zhang D., Chen X., Du Y., Wang Z., Gao Y., Huang B., Li Y., Nano Energy, 2020, 72, 104667 [81] He T., Zhang L., Kour G., Du A., J. CO2 Util., 2020, 37, 272 [82] Hui L., Xue Y., Yu H., Liu Y., Fang Y., Xing C., Huang B., Li Y., J. Am. Chem. Soc., 2019, 141, 10677 [83] Yu H., Xue Y., Hui L., Zhang C., Fang Y., Liu Y., Chen X., Zhang D., Huang B., Li Y., Natl. Sci. Rev., 2021, 8, 10677 [84] Shen H., Li Y., Shi Z., ACS Appl. Mater. Interfaces, 2019, 11, 2563 [85] Ren H., Shao H., Zhang L., Guo D., Jin Q., Yu R., Wang L., Li Y., Wang Y., Zhao H., Wang D., Adv. Energy Mater., 2015, 5, 1500296 [86] Lin Z., Carbon, 2015, 86, 301 [87] Rivera-Cárcamo C., Serp P., ChemCatChem, 2018, 10, 5058 [88] Qi H., Yu P., Wang Y., Han G., Liu H., Yi Y., Li Y., Mao L., J. Am. Chem. Soc., 2015, 137, 5260 [89] Wu P., Du P., Zhang H., Cai C., Phys. Chem. Chem. Phys., 2014, 16, 5640 [90] Yu H., Xue Y., Huang B., Hui L., Zhang C., Fang Y., Liu Y., Zhao Y., Li Y., Liu H., Li Y., iSci., 2019, 11, 31 [91] Chen Z., Chen L., Jiang M., Chen D., Wang Z., Yao X., Singh C., Jiang Q., J. Mater. Chem. A, 2020, 8, 15086 [92] Gawande M. B., Ariga K., Yamauchi Y., Small, 2021, 17, 2101584 [93] Li J., Gao X., Jiang X., Li X., Liu Z., Zhang J., Tung C., Wu L., ACS Catal., 2017, 7, 5209 [94] Xue Y., Li J., Xue Z., Li Y., Liu H., Li D., Yang W., Li Y., ACS Appl. Mater. Interfaces, 2016, 8, 31083 [95] Low J., Yu J., Jaroniec M., Wageh S., Al-Ghamdi A. A., Adv. Mater., 2017, 29, 1601694 [96] Kim S.-J., Lee E. G., Park S. D., Jeon C. J., Cho Y. H., Rhee C. K., Kim W. W., J. Sol-Gel Sci. Technol., 2001, 22, 63 [97] Liu C., Han X., Xie S., Kuang Q., Wang X., Jin M., Xie Z., Zheng L., Chem. Asian J., 2013, 8, 282 [98] Wang S., Yi L., Halpert J. E., Lai X., Liu Y., Cao H., Yu R., Wang D., Li Y., Small, 2012, 8, 265 [99] Yang N., Liu Y., Wen H., Tang Z., Zhao H., Li Y., Wang D., ACS Nano, 2013, 7, 1504 [100] Thangavel S., Krishnamoorthy K., Krishnaswamy V., Raju N., Kim S. J., Venugopal G., J. Phys. Chem. C, 2015, 119, 22057 [101] Song B., Chen M., Zeng G., Gong J., Shen M., Xiong W., Zhou C., Tang X., Yang Y., Wang W., J. Hazard. Mater., 2020, 398, 122957 [102] Si H., Deng Q., Chen L., Wang L., Liu X., Wu W., Zhang Y., Zhou J., Zhang H., J. Alloys Compd., 2019, 794, 261 [103] Xue Y., Zuo Z., Li Y., Liu H., Li Y., Small, 2017, 13, 1700936 [104] Hui L., Jia D., Yu H., Xue Y., Li Y., ACS Appl. Mater. Interfaces, 2019, 11, 2618 [105] Yu H., Xue Y., Hui L., Zhang C., Li Y., Zuo Z., Zhao Y., Li Z., Li Y., Adv. Mater., 2018, 30, 1707082 [106] Fang Y., Xue Y., Li Y., Yu H., Hui L., Liu Y., Xing C., Zhang C., Zhang D., Wang Z., Chen X., Gao Y., Huang B., Li Y., Angew. Chem. Int. Ed., 2020, 59, 13021 [107] Fang Y., Xue Y., Hui L., Yu H., Li Y., Angew. Chem. Int. Ed., 2021, 60, 3170 [108] Gao X., Li J., Du R., Zhou J., Huang M., Liu R., Li J., Xie Z., Wu L., Liu Z., Zhang J., Adv. Mater., 2017, 29, 1605308 [109] Jin Z., Zhou Q., Chen Y., Mao P., Li H., Liu H., Wang J., Li Y., Adv. Mater., 2016, 28, 3697 [110] Xu J., Li J., Yang Q., Xiong Y., Chen C., Electrochim. Acta, 2017, 251, 672 [111] Guo S., Yu P., Li W., Yi Y., Wu F., Mao L., J. Am. Chem. Soc., 2020, 142, 2074 [112] Pinto H., Jones R., Goss J. P., Briddon P. R., J. Phys. Condens. Matter., 2009, 21, 402001 [113] Barja S., Garnica M., Hinarejos J. J., Vázquez de Parga A. L., Martín N., Miranda R., Chem. Commun., 2010, 46, 8198 [114] Sun J. T., Lu Y. H., Chen W., Feng Y. P., Wee A. T. S., Phys. Rev. B, 2010, 81, 155403 [115] Kang K., Watanabe S., Broch K., Sepe A., Brown A., Nasrallah I., Nikolka M., Fei Z., Heeney M., Matsumoto D., Marumoto K., Tanaka H., Kuroda S., Sirringhaus H., Nat. Mater., 2016, 15, 896 [116] Cui M., Guo Y., Zhu Y., Liu H., Wen W., Wu J., Cheng L., Zeng Q., Xie L., J. Phys. Chem. C, 2018, 122, 7551 [117] Zhang Y., Yang X., Wang W., Wang X., Sun L., J. Energy Chem., 2018, 27, 413 [118] Yao H., Zhao Y., Yang N., Hao W., Zhao H., Li S., Zhu J., Shen L., Fang W., J. Energy Chem., 2021, 65, 141 [119] Han Y., Lu X., Tang S., Yin X., Wei Z., Lu T., Adv. Energy Mater., 2018, 8, 1870077 [120] Chen S., Shi G., Adv. Mater., 2017, 29, 1605448 [121] Kuang C., Tang G., Jiu T., Yang H., Liu H., Li B., Luo W., Li X., Zhang W., Lu F., Fang J., Li Y., Nano Lett., 2015, 15, 2756 [122] Xiao J., Shi J., Liu H., Xu Y., Lv S., Luo Y., Li D., Meng Q., Li Y., Adv. Energy Mater., 2015, 5, 1401943 [123] Li M., Wang Z., Kang T., Yang Y., Gao X., Hsu C., Li Y., Liao L., Nano Energy, 2018, 43, 47 [124] Zhang X., Gong C., Akakuru O. U., Su Z., Wu A., Wei G., Chem. Soc. Rev., 2019, 48, 5564 [125] Wang C., Yu P., Guo S., Mao L., Liu H., Li Y., Chem. Commun., 2016, 52, 5629 [126] Parvin N., Jin Q., Wei Y., Yu R., Zheng B., Huang L., Zhang Y., Wang L., Zhang H., Gao M., Zhao H., Hu W., Li Y., Wang D., Adv. Mater., 2017, 29, 1606755 [127] Guo J., Guo M., Wang F., Jin W., Chen C., Liu H., Li Y., Angew. Chem. Int. Ed., 2020, 59, 16712 [128] Liu J., Shen X., Baimanov D., Wang L., Xiao Y., Liu H., Li Y., Gao X., Zhao Y., Chen C., ACS Appl. Mater. Interfaces, 2019, 11, 2647 [129] Chen X., Zhang S., Acta Phys. Chim. Sin., 2018, 34, 1061 [130] Jin J., Guo M., Liu J., Liu J., Zhou H., Li J., Wang L., Liu H., Li Y., Zhao Y., Chen C., ACS Appl. Mater. Interfaces, 2018, 10, 8436 [131] Xie J., Wang C., Wang N., Zhu S., Mei L., Zhang X., Yong Y., Li L., Chen C., Huang C., Gu Z., Li Y., Zhao Y., Biomaterials, 2020, 244, 119940 |
[1] | LAN Weifei, HU Ruifeng, HUANG Danrong, DONG Xu, SHEN Gangyi, CHANG Shan, DAI Dongsheng. Palladium Nanoparticles/Graphdiyne Oxide Nanocomposite with Excellent Peroxidase-like Activity and Its Application for Glutathione Detection [J]. Chemical Research in Chinese Universities, 2022, 38(2): 529-534. |
[2] | CHAI Jingshan, LI Qiushi, ZHAO Yu, LIU Yang. Nanocomposites Facilitate the Removal of Aβ Fibrils for Neuroprotection [J]. Chemical Research in Chinese Universities, 2022, 38(2): 522-528. |
[3] | YANG Miao, WANG Wenjing, SU Kongzhao, YUAN Daqiang. Dimeric Calix[4]resorcinarene-based Porous Organic Cages for CO2/CH4 Separation [J]. Chemical Research in Chinese Universities, 2022, 38(2): 428-432. |
[4] | WANG Yuwen, CHENG Tiexin, ZHOU Guangdong. Study on the Mechanism of Asphaltenes Reducing Oil-Water Interfacial Tension [J]. Chemical Research in Chinese Universities, 2022, 38(2): 616-621. |
[5] | ZHENG Zhiqiang, HE Feng, XUE Yurui, LI Yuliang. Loading Nickel Atoms on GDY for Efficient CO2 Fixation and Conversion [J]. Chemical Research in Chinese Universities, 2022, 38(1): 92-98. |
[6] | XU Hao, WANG Yanhong, PENG Rusi, JIANG Jingang, ZHANG Kun, WU Peng. Synthesis of Micro-Mesoporous Ti-MOR/Silica Composite Spheres in Oil-in-Water Microemulsion System [J]. Chemical Research in Chinese Universities, 2022, 38(1): 192-199. |
[7] | LUAN Xiaoyu, XUE Yurui. Nickel(hydro) oxide/graphdiyne Catalysts for Efficient Oxygen Production Reaction [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1268-1274. |
[8] | AN Qingqing, JIANG Yanglin, HE Huan, GAO Juan, WANG Peng, JIA Zhiyu. Architecting Pyrenyl-graphdiyne Nanowalls for High Capacity and Long-life Lithium Storage [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1323-1327. |
[9] | ZHANG Chao, LI Yuliang. Graphdiyne Based Atomic Catalyst: an Emerging Star for Energy Conversion [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1149-1157. |
[10] | LI Peipei, YU Jia, CAO Changyan, SONG Weiguo. Graphdiyne: a Highly Sensitive Material for ppb-Level NO2 Gas Sensing at Room Temperature [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1317-1322. |
[11] | WU Han, HE Feng. Activity Origins of Graphdiyne Based Bifunctional Atom Catalysts for Hydrogen Evolution and Water Oxidation [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1334-1340. |
[12] | LI Xiaodan, GUO Mengyu, CHEN Chunying. Graphdiyne: from Preparation to Biomedical Applications [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1176-1194. |
[13] | HU Guilin, HE Jingyi, LI Yongjun. Application of Graphdiyne and Its Analogues in Photocatalysis and Photoelectrochemistry [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1195-1212. |
[14] | MAN Yixiao, ZHAO Jinyu, LIU Shipeng, PAN Qingyan, ZHAO Yingjie. Heteroatom Doped Graphdiyne and Analogues: Synthesis, Structures and Applications [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1213-1223. |
[15] | SONG Congying, LI Guoxing. Graphdiyne: A Versatile Material in Electrochemical Energy Conversion and Storage [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1224-1241. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||