Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2): 356-363.doi: 10.1007/s40242-022-1494-2
• Reviews • Previous Articles Next Articles
DING Huimin, MAL Arindam, WANG Cheng
Received:
2021-12-12
Revised:
2022-02-01
Online:
2022-04-01
Published:
2022-05-18
Contact:
WANG Cheng
E-mail:chengwang@whu.edu.cn
Supported by:
DING Huimin, MAL Arindam, WANG Cheng. Energy Storage in Covalent Organic Frameworks: From Design Principles to Device Integration[J]. Chemical Research in Chinese Universities, 2022, 38(2): 356-363.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Côté A. P., Benin A. I., Ockwig N. W., O'Keeffe M., Matzger A. J., Yaghi O. M., Science, 2005, 310, 1166. [2] El-Kaderi H. M., Hunt J. R., Mendoza-Cortes J. L., Côte A. P., Taylor R. E., O'Keeffe M., Yaghi O. M., Science, 2007, 316, 268. [3] Feng X., Ding X. S., Jiang D. L.,Chem. Soc. Rev., 2012, 41, 6010. [4] Ding S. Y., Wang W., Chem. Soc. Rev., 2013, 42, 548. [5] Gui B., Lin G., Ding H., Gao C., Mal A., Wang C., Acc. Chem. Res., 2020, 53, 2225. [6] Zeng Y., Zou R., Zhao Y., Adv. Mater., 2016, 28, 2855. [7] Fan H., Mundstock A., Feldhoff A., Knebel A., Gu J., Meng H., Caro J., J. Am. Chem. Soc., 2018, 140, 10094. [8] Ying Y., Tong M., Ning S., Ravi S. K., Peh S. B., Tan S. C., Pennycook S. J., Zhao D., J. Am. Chem. Soc., 2020, 142, 4472. [9] Ding S. Y., Gao J., Wang Q., Zhang Y., Song W. G., Su C. Y., Wang W., J. Am. Chem. Soc., 2011,133, 19816. [10] Wang X., Han X., Zhang J., Wu X., Liu Y., Cui Y., J. Am. Chem. Soc., 2016, 138, 12332. [11] Yan S., Guan X., Li H., Li D., Xue M., Yan Y., Valtchev V., Qiu S., Fang Q., J. Am. Chem. Soc., 2019, 141, 2920. [12] Meng Y., Luo Y., Shi J. L., Ding H., Lang X., Chen W., Zheng A., Sun J., Wang C., Angew. Chem. Int. Ed., 2020, 59, 3624. [13] Chen R., Wang Y., Ma Y., Mal A., Gao X. Y., Gao L., Qiao L., Li X. B., Wu L. Z., Wang C., Nat. Commun., 2021, 12, 1354. [14] Ding S. Y., Dong M., Wang Y. W., Chen Y. T., Wang H. Z., Su C. Y., Wang W., J. Am. Chem. Soc., 2016, 138, 3031. [15] Lin G., Ding H., Yuan D., Wang B., Wang C., J. Am. Chem. Soc., 2016, 138, 3302. [16] Liu X., Huang D., Lai C., Zeng G., Qin L., Wang H., Yi H., Li B., Liu S., Zhang M., Deng R., Fu Y., Li L., Xue W., Chen S., Chem. Soc. Rev., 2019, 48, 5266. [17] Haug W. K., Moscarello E. M., Wolfson E. R., McGrier P. L., Chem. Soc. Rev., 2020, 49, 839. [18] Dogru M., Bein T., Chem. Commun., 2014, 50, 5531. [19] Medina D. D., Sick T., Bein T., Adv. Energy Mater., 2017, 7, 1700387. [20] Ding H., Li J., Xie G., Lin G., Chen R., Peng Z., Yang C., Wang B., Sun J., Wang C., Nat. Commun., 2018, 9, 5234. [21] Ranjeesh K. C., Illathvalappil R., Veer S. D., Peter J., Wakchaure V. C., Goudappagouda Raj K. V., Kurungot S., Babu S. S., J Am. Chem. Soc., 2019, 141, 14950. [22] Meng Z., Aykanat A., Mirica K. A., Chem. Mater., 2019, 31, 819. [23] Wu X., Hong Y. L., Xu B., Nishiyama Y., Jiang W., Zhu J., Zhang G., Kitagawa S., Horike S., J. Am. Chem. Soc., 2020, 142, 14357. [24] Yang Y., He X., Zhang P., Andaloussi Y. H., Zhang H., Jiang Z., Chen Y., Ma S., Cheng P., Zhang Z., Angew. Chem. Int. Ed., 2020, 59, 3678. [25] Peng Z., Ding H., Chen R., Gao C., Wang C., Acta Chim. Sinica, 2019, 77, 205. [26] Chen X., Sun W., Wang Y., ChemElectroChem, 2020, 7, 3905. [27] Sun T., Xie J., Guo W., Li D. S., Zhang Q.,Adv. Energy Mater., 2020, 10, 1904199. [28] Zhu D., Xu G., Barnes M., Li Y., Tseng C. P., Zhang Z., Zhang J. J., Zhu Y., Khalil S., Rahman M. M., Verduzco R., Ajayan P. M., Adv. Funct. Mater., 2021, 31, 2100505. [29] Zhao X., Pachfule P., Thomas A., Chem. Soc. Rev., 2021, 50, 6871. [30] Iqbal R., Yasin G., Hamza M., Ibraheem S., Ullah B., Saleem A., Ali S., Hussain S., Nguyen T. A., Slimani Y., Pathak R., Coord. Chem. Rev., 2021, 447, 214152. [31] Kandambeth S., Kale V. S., Shekhah O., Alshareef H. N., Eddaoudi M., Adv. Energy Mater., 2021, 2100177. [32] Xu F., Xu H., Chen X., Wu D., Wu Y., Liu H., Gu C., Fu R., Jiang D., Angew. Chem. Int. Ed., 2015, 54, 6814. [33] Khattak A. M., Ghazi Z. A., Liang B., Khan N. A., Iqbal A., Li L., Tang Z., J. Mater. Chem. A, 2016, 4, 16312. [34] Yang Z., Liu J., Li Y., Zhang G., Xing G., Chen L., Angew. Chem. Int. Ed., 2021, 60, 20754. [35] Sajjad M., Lu W.,J. Energy Storage, 2021,39, 102618. [36] Li M., Liu J., Zhang T., Song X., Chen W., Chen L., Small, 2021, 17, 2005073. [37] DeBlase C. R., Silberstein K. E., Truong T. T., Abruna H. D., Dichtel W. R., J. Am. Chem. Soc., 2013, 135, 16821. [38] DeBlase C. R., Hernandez-Burgos K., Silberstein K. E.,́Rodríguez-Calero G. G., Bisbey R. P., Abruña H. D., Dichtel W. R., ACS Nano, 2015, 9, 3178. [39] Mulzer C. R., Shen L., Bisbey R. P., McKone J. R., Zhang N., Abruña H. D., Dichtel W. R., ACS Cent. Sci., 2016, 2, 667. [40] Xu J., He Y., Bi S., Wang M., Yang P., Wu D., Wang J., Zhang F., Angew. Chem. Int. Ed., 2019, 58, 12065. [41] Yang Y., Zhang P., Hao L., Cheng P., Chen Y., Zhang Z., Angew. Chem. Int. Ed., 2021, 60, 21838. [42] Guo Z. C., Shi Z. Q., Wang X. Y., Li Z. F., Li G., Coord. Chem. Rev., 2020, 422, 213465. [43] Sahoo R., Mondal S., Pal S. C., Mukherjee D., Das M. C., Adv. Energy Mater., 2021, 11, 2102300. [44] Xu H., Tao S., Jiang D., Nat. Mater., 2016, 15, 722. [45] Ma H. P., Liu B. L., Li B., Zhang L. M., Li Y. G., Tan H. Q., Zang H. Y., Zhu G. S., J. Am. Chem. Soc., 2016, 138, 5897. [46] Sasmal H. S., Aiyappa H. B., Bhange S. N., Karak S., Halder A., Kurungot S., Banerjee R., Angew. Chem. Int. Ed., 2018, 57, 10894. [47] Etacheri V., Marom R., Elazari R., Salitra G., Aurbach D., Energy Environ. Sci., 2011, 4, 3243. [48] Xu D., Liang M., Qi S., Sun W., Lv L. P., Du F. H., Wang B., Chen S., Wang Y., Yu Y., ACS Nano, 2021, 15, 47. [49] Zhou T., Zhao Y., Choi J. W., Coskun A., Angew. Chem. Int. Ed., 2019, 58, 16795. [50] Wang G., Chandrasekhar N., Biswal B. P., Becker D., Paasch S., Brunner E., Addicoat M., Yu M., Berger R., Feng X., Adv. Mater., 2019, 31, 1901478. [51] Chen D., Huang S., Zhong L., Wang S., Xiao M., Han D., Meng Y., Adv. Funct. Mater., 2020, 30, 1907717. [52] Hu Y., Wayment L. J., Haslam C., Yang X., Lee S. H., Jin Y., Zhang W., EnergyChem, 2021, 3, 100048. [53] Xu F., Jin S. B., Zhong H., Wu D. C., Yang X. Q., Chen X., Wei H., Fu R. W., Jiang D. L., Sci. Rep., 2015, 5, 8225. [54] Luo Z., Liu L., Ning J., Lei K., Lu Y., Li F., Chen J., Angew. Chem. Int. Ed., 2018, 57, 9443. [55] Chen H., Tu H., Hu C., Liu Y., Dong D., Sun Y., Dai Y., Wang S., Qian H., Lin Z., Chen L., J. Am. Chem. Soc., 2018, 140, 896. [56] Haldar S., Roy K., Nandi S., Chakraborty D., Puthusseri D., Gawli Y., Ogale S., Vaidhyanathan R., Adv. Energy Mater., 2018, 8, 1702170. [57] Chen X. D., Li Y. S., Wang L., Xu Y., Nie A., Li Q., Wu F., Sun W. W., Zhang X., Vajtai R., Ajayan P. M., Chen L., Wang Y., Adv. Mater., 2019, 31, 1901640. [58] Sun T., Wang C., Xu Y., Chem. Res. Chinese Universities, 2020, 36(4), 640. [59] Han Z., Ai Y., Jiang X., You Y., Wei F., Luo H., Cui J., Bao Q., Fu J., He Q., Liu S., Chem. Eur. J., 2020, 26, 10433. [60] Wang S., Wang Q., Shao P., Han Y., Gao X., Ma L., Yuan S., Ma X., Zhou J., Feng X., Wang B., J. Am. Chem. Soc., 2017, 139, 4258. [61] Wei C., Tan L., Zhang Y., Zhang K., Xi B., Xiong S., Feng J., Qian Y., ACS Nano, 2021, 15, 12741. [62] Lei Z., Yang Q., Xu Y., Guo S., Sun W., Liu H., Lv L. P., Zhang Y., Wang Y., Nat. Commun., 2018, 9, 576. [63] Zhang G., Hong Y.-l., Nishiyama Y., Bai S., Kitagawa S., Horike S., J. Am. Chem. Soc., 2019, 141, 1227. [64] Rosenman A., Markevich E., Salitra G., Aurbach D., Garsuch A., Chesneau F. F., Adv. Energy Mater., 2015, 5, 1500212. [65] Kang W., Deng N., Ju J., Li Q., Wu D., Ma X., Li L., Naebe M., Cheng B., Nanoscale, 2016, 8, 16541. [66] Guo B., Ben T., Bi Z., Veith G. M., Sun X. G., Qiu S., Dai S., Chem. Commun., 2013, 49, 4905. [67] Talapaneni S. N., Hwang T. H., Je S. H., Buyukcakir O., Choi J. W., Coskun A., Angew. Chem. Int. Ed., 2016, 55, 3106. [68] Ghazi Z. A., Zhu L., Wang H., Naeem A., Khattak A. M., Liang B., Khan N. A., Wei Z., Li L., Tang Z., Adv. Energy Mater., 2016, 6, 1601250. [69] Jiang Q., Li Y., Zhao X., Xiong P., Yu X., Xu Y., Chen L., J. Mater. Chem. A, 2018, 6, 17977. [70] Wang D. G., Li N., Hu Y., Wan S., Song M., Yu G., Jin Y., Wei W., Han K., Kuang G. C., Zhang W., ACS Appl. Mater. Interfaces, 2018, 10, 42233. [71] Shin H., Kim D., Kim H. J., Kim J., Char K., Yavuz C. T., Choi J. W., Chem. Mater., 2019, 31, 7910. [72] Wang J., Qin W., Zhu X., Teng Y., Energy, 2020, 199, 117372. [73] Liao H., Ding H., Li B., Ai X., Wang C., J. Mater. Chem. A, 2014, 2, 8854. [74] Liao H., Wang H., Ding H., Meng X., Xu H., Wang B., Ai X., Wang C., J. Mater. Chem. A, 2016, 4, 7416. [75] Meng Y., Lin G., Ding H., Liao H., Wang C., J. Mater. Chem. A, 2018, 6, 17186. [76] Xu F., Yang S., Jiang G., Ye Q., Wei B., Wang H., ACS Appl. Mater. Interfaces, 2017, 9, 37731. [77] Ye H., Li Y., Energy Fuels, 2021, 35(9), 7624. [78] Qin K., Huang J., Holguin K., Luo C., Energy Environ. Sci., 2020, 13, 3950. [79] Kim M. S., Lee W. J., Paek S. M., Park J. K., ACS Appl. Mater. Interfaces, 2018, 10, 32102. [80] Liu J., Lyu P., Zhang Y., Nachtigall P., Xu Y., Adv. Mater., 2018, 30, 1705401. [81] Patra B. C., Das S. K., Ghosh A., Raj K. A., Moitra P., Addicoat M., Mitra S., Bhaumik A., Bhattacharya S., Pradhan A., J. Mater. Chem. A, 2018, 6, 16655. [82] Hu M. M., Huang H., Gao Q., Tang Y., Luo Y., Deng Y., Zhang L., Energy Fuels, 2021, 35, 1851. [83] Shi R., Liu L., Lu Y., Wang C., Li Y., Li L., Yan Z., Chen J., Nat. Commun., 2020, 11, 178. [84] Gu S., Wu S., Cao L., Li M., Qin N., Zhu J., Wang Z., Li Y., Li Z., Chen J., Lu Z., J. Am. Chem. Soc., 2019, 141, 9623. [85] Li S. Y., Li W. H., Wu X. L., Tian Y., Yue J., Zhu G., Chem. Sci., 2019, 10, 7695. [86] Zhang H., Sun W., Chen X., Wang Y., ACS Nano, 2019, 13, 14252. [87] Chen X., Zhang H., Ci C., Sun W., Wang Y., ACS Nano, 2019, 13, 3600. [88] Park J. H., Kwak M. J., Hwang C., Kang K. N., Liu N., Jang J. H., Grzy-bowski B. A., Adv. Mater., 2021, 33, 2101726. [89] Khayum A., Ghosh M., Vijayakumar V., Halder A., Nurhuda M., Kumar S., Addicoat M., Kurungot S., Banerjee R., Chem. Sci., 2019, 10, 8889. [90] Wang W., Kale V. S., Cao Z., Kandambeth S., Zhang W., Ming J., Parvatkar P. T., Abou-Hamad E., Shekhah O., Cavallo L., Eddaoudi M., ACS Energy Lett., 2020, 5, 2256. [91] Sun R., Hou S., Luo C., Ji X., Wang L., Mai L., Wang C., Nano Lett., 2020, 20, 3880. [92] Lu H., Ning F., Jin R., Teng C., Wang Y., Xi K., Zhou D., Xue G., ChemSusChem, 2020, 13, 3447. |
[1] | BU Ran, LU Yingying, ZHANG Bing. Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1151-1162. |
[2] | CHEN Weijie, XIA Huicong, GUO Kai, JIN Wangzhe, DU Yu, YAN Wenfu, QU Gan, ZHANG Jianan. Atomically Dispersed Fe-N4 Sites and Fe3C Particles Catalyzing Polysulfides Conversion in Li-S Batteries [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1232-1238. |
[3] | YANG Zhichen, KANG Xiaoting, ZOU Bo, YUAN Xuna, LI Yajie, WU Qin, GUO Yupeng. Development of the Self-doping Porous Carbon and Its Application in Supercapacitor Electrode [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1065-1072. |
[4] | GAO Wei, LI Yufeng, ZHAO Jitao, ZHANG Zhe, TANG Weiwei, WANG Jun, WU Zhenyu, LI Zhenyu. Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1097-1104. |
[5] | HOU Wenhui, OU Yu and LIU Kai. Progress on High Voltage PEO-based Polymer Solid Electrolytes in Lithium Batteries [J]. Chemical Research in Chinese Universities, 2022, 38(3): 735-743. |
[6] | SONG Jialong, WANG Zitao, LIU Yaozu, TUO Chao, WANG Yujie, FANG Qianrong, and QIU Shilun. A Three-dimensional Covalent Organic Framework for CO2 Uptake and Dyes Adsorption [J]. Chemical Research in Chinese Universities, 2022, 38(3): 834-837. |
[7] | CAO Xiaohao, HE Yanjing, ZHANG Zhengqing, SUN Yuxiu, HAN Qi, GUO Yandong, ZHONG Chongli. Predicting of Covalent Organic Frameworks for Membrane-based Isobutene/1,3-Butadiene Separation: Combining Molecular Simulation and Machine Learning [J]. Chemical Research in Chinese Universities, 2022, 38(2): 421-427. |
[8] | CUI Yumeng, MIAO Zhuang, LIU Qi, JIN Fenchun, ZHAI Yufeng, ZHANG Lingyan, WANG Wenli, WANG Ke, LIU Guiyan, ZENG Yongfei. Construction of a Three-dimensional Covalent Organic Framework via the Linker Exchange Strategy [J]. Chemical Research in Chinese Universities, 2022, 38(2): 402-408. |
[9] | WANG Guangbo, XIE Kehui, ZHU Fucheng, KAN Jinglan, LI Sha, GENG Yan, DONG Yubin. Construction of Tetrathiafulvalene-based Covalent Organic Frameworks for Superior Iodine Capture [J]. Chemical Research in Chinese Universities, 2022, 38(2): 409-414. |
[10] | MENG Weijia, LI Yang, ZHAO Ziqiang, SONG Xiaoyu, LU Fanli, CHEN Long. Ultrathin 2D Covalent Organic Framework Film Fabricated via Langmuir-Blodgett Method with a “Two-in-One” Type Monomer [J]. Chemical Research in Chinese Universities, 2022, 38(2): 440-445. |
[11] | HOU Bang, LI Ziping, KANG Xing, JIANG Hong, CUI Yong. Recent Advances of Covalent Organic Frameworks for Chiral Separation [J]. Chemical Research in Chinese Universities, 2022, 38(2): 350-355. |
[12] | JIA Shuping, ZHAO Peng, LIU Qi, CHEN Yao, CHENG Peng, YANG Yi, ZHANG Zhenjie. Stepwise Fabrication of Proton-conducting Covalent Organic Frameworks for Hydrogen Fuel Cell Applications [J]. Chemical Research in Chinese Universities, 2022, 38(2): 461-467. |
[13] | LIU Shujing, GUO Jia. Two-dimensional Covalent Organic Frameworks: Intrinsic Synergy Promoting Photocatalytic Hydrogen Evolution [J]. Chemical Research in Chinese Universities, 2022, 38(2): 373-381. |
[14] | WANG Lu, WANG Dong. Two-dimensional Covalent Organic Frameworks: Tessellation by Synthetic Art [J]. Chemical Research in Chinese Universities, 2022, 38(2): 265-274. |
[15] | LI Jiali, ZHANG Zhenwei, JIA Ji, LIU Xiaoming. Covalent Organic Frameworks for Photocatalytic Organic Transformation [J]. Chemical Research in Chinese Universities, 2022, 38(2): 275-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||