Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3): 379-393.doi: 10.1007/s40242-021-1123-5
• Review • Previous Articles Next Articles
ZHANG Xiuling1,2,3, GUO Shiquan1,2,3, QIN Yue1,2,3, LI Congju1,2,3
Received:
2021-03-15
Revised:
2021-04-07
Online:
2021-06-01
Published:
2021-05-08
Contact:
LI Congju
E-mail:congjuli@126.com
Supported by:
ZHANG Xiuling, GUO Shiquan, QIN Yue, LI Congju. Functional Electrospun Nanocomposites for Efficient Oxygen Reduction Reaction[J]. Chemical Research in Chinese Universities, 2021, 37(3): 379-393.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Höök M., Tang X., Energy Policy, 2013, 52, 797 |
[2] | Abas N., Kalair A., Khan N., Futures, 2015, 69, 31 |
[3] | Chen Z., Yu A., Higgins D., Li H., Wang H., Chen Z., Nano Letters, 2012, 12(4), 1946 |
[4] | Kirubakaran A., Jain S., Nema R. K., Renewable, Sustainable Energy Reviews, 2009, 13(9), 2430 |
[5] | Shi W., Wang Y. C., Chen C., Yang X. D., Zhou Z. Y., Sun S. G., Chinese Journal of Catalysis, 2016, 37(7), 1103 |
[6] | Xiong Y., Xiao L., Yang Y., DiSalvo F. J., Abruña H. D., Chemistry of Materials, 2018, 30(5), 1532 |
[7] | Higgins D. C., Wang R., Hoque M. A., Zamani P., Abureden S., Chen Z., Nano Energy, 2014, 10, 135 |
[8] | Shui J.-I., Chen C., Li J. C. M., Advanced Functional Materials, 2011, 21(17), 3357 |
[9] | Xue Q., Ding Y., Xue Y., Li F., Chen P., Chen Y., Carbon, 2018, 139, 137 |
[10] | Zhang S., Cai Y., He H., Zhang Y., Liu R., Cao H., Wang M., Liu J., Zhang G., Li Y., Liu H., Li B., Journal of Materials Chemistry A, 2016, 4(13), 4738 |
[11] | Yuan Y., Wang J., Adimi S., Shen H., Thomas T., Ma R., Attfield J. P., Yang M., Nature Materials, 2020, 19(3), 282 |
[12] | Li X., Popov B. N., Kawahara T., Yanagi H., Journal of Power Sources, 2011, 196(4), 1717 |
[13] | Domínguez C., Pérez-Alonso F. J., Salam M. A., de la Fuente J. L. G., Al-Thabaiti S. A., Basahel S. N., Peña M. A., Fierro J. L. G., Rojas S., International Journal of Hydrogen Energy, 2014, 39(10), 5309 |
[14] | Wang C., Chen W., Xia K., Xie N., Wang H., Zhang Y., Small, 2019, 15(7), 1804966 |
[15] | Yuan W., Xie A., Li S., Huang F., Zhang P., Shen Y., Energy, 2016, 115, 397 |
[16] | Kim D.-W., Li O. L., Saito N., Physical Chemistry Chemical Physics, 2015, 17(1), 407 |
[17] | Gao S., Liu H., Geng K., Wei X., Nano Energy, 2015, 12, 785 |
[18] | Xu J., Gao P., Zhao T. S., Energy Environmental Science, 2012, 5(1), 5333 |
[19] | Liang Y., Wang H., Zhou J., Li Y., Wang J., Regier T., Dai H., Journal of the American Chemical Society, 2012, 134(7), 3517 |
[20] | Guo D., Han S., Ma R., Zhou Y., Liu Q., Wang J., Zhu Y., Microporous and Mesoporous Materials, 2018, 270, 1 |
[21] | Chen L., Zhang Y., Dong L., Liu X., Long L., Wang S., Liu C., Dong S., Jia J., Carbon, 2020, 158, 885 |
[22] | Zhang J., Chen J., Jiang Y., Zhou F., Wang G., Wang R., Applied Surface Science, 2016, 389, 157 |
[23] | Zhao Z., Li M., Zhang L., Dai L., Xia Z., Advanced Materials, 2015, 27(43), 6834. |
[24] | Guo H., Feng Q., Zhu J., Xu J., Li Q., Liu S., Xu K., Zhang C., Liu T., Journal of Materials Chemistry A, 2019, 7(8), 3664 |
[25] | Wang J., Han G., Wang L., Du L., Chen G., Gao Y., Ma Y., Du C., Cheng X., Zuo P., Yin G., Small, 2018, 14(15), 1704282 |
[26] | Li S., Chen W., Pan H., Cao Y., Jiang Z., Tian X., Hao X., Maiyalagan T., Jiang Z. J., ACS Sustainable Chemistry & Engineering, 2019, 7(9), 8530 |
[27] | Wu X. Q., Zhao J., Wu Y. P., Dong W. W., Li D. S., Li J. R., Zhang Q., ACS Applied Materials Interfaces, 2018, 10(15), 12740 |
[28] | Li Y., Zhao T., Lu M., Wu Y., Xie Y., Xu H., Gao J., Yao J., Qian G., Zhang Q., Small, 2019, 15(43), 1901940 |
[29] | Zhou K., Zhang C., Xiong Z., Chen H. Y., Li T., Ding G., Yang B., Liao Q., Zhou Y., Han S. T., Advanced Functional Materials, 2020, 30(38), 2001296 |
[30] | Wang K., Wang Z., Liu J., Li C., Mao F., Wu H., Zhang Q., ACS Applied Materials Interfaces, 2020, 12(42), 47482 |
[31] | Wang K., Bi R., Huang M., Lv B., Wang H., Li C., Wu H., Zhang Q., Inorganic Chemistry, 2020, 59(10), 6808 |
[32] | Li C., Wang K., Li J., Zhang Q., Nanoscale, 2020, 12(14), 7870 |
[33] | Peng L., Zhang X., Sun Y., Xing Y., Li C., Environmental Research, 2020, 188, 109742 |
[34] | Chen X., Wang N., Shen K., Xie Y., Tan Y., Li Y., ACS Applied Materials Interfaces, 2019, 11(29), 25976 |
[35] | Jing Y., Cheng Y., Wang L., Liu Y., Yu B., Yang C., Chemical Engineering Journal, 2020, 397, 125539 |
[36] | Aravindan V., Suresh Kumar P., Sundaramurthy J., Ling W. C., Ramakrishna S., Madhavi S., Journal of Power Sources, 2013, 227, 284 |
[37] | Ramadan M., Abdellah A. M., Mohamed S. G., Allam N. K., Scientific Reports, 2018, 8(1), 7988 |
[38] | Park H. W., Lee D. U., Zamani P., Seo M. H., Nazar L. F., Chen Z., Nano Energy, 2014, 10, 192 |
[39] | Zamani P., Higgins D., Hassan F., Jiang G., Wu J., Abureden S., Chen Z., Electrochimica Acta, 2014, 139, 111 |
[40] | Zhang X., Fan W., Li H., Zhao S., Wang J., Wang B., Li C., Journal of Materials Chemistry A, 2018, 6(43), 21458 |
[41] | Zhang X., Gong Y., Li S., Sun C., ACS Catalysis, 2017, 7(11), 7737 |
[42] | Yang W., Li N.W., Zhao S., Yuan Z., Wang J., Du X., Wang B., Cao R., Li X., Xu W., Wang Z. L., Li C., Advanced Materials Technologies, 2018, 3(2), 1700241 |
[43] | Wang D. C., Yu H. Y., Qi D., Ramasamy M., Yao J., Tang F., Tam K. M. C., Ni Q., ACS Applied Materials Interfaces, 2019, 11(27), 24435 |
[44] | Aghayan M., Hussainova I., Kirakosyan K., Rodríguez M. A., Materials Chemistry and Physics, 2017, 192, 138 |
[45] | Formhals A., Process and Apparatus for Preparing Artificial Threads, US Patent, 1934, 1975504 |
[46] | Reneker D. H., Chun I., Nanotechnology, 1996, 7, 216 |
[47] | Doshi J., Reneker D. H., Journal of Electrostatics, 1995, 35, 151 |
[48] | Long Y. Z., Yan X., Wang X. X., Zhang J., Yu M., Electrospinning:the setup and procedure, William Andrew Publishing, New York City, 2019, 21 |
[49] | Stacy J., Regmi Y. N., Leonard B., Fan M., Renewable and Sustainable Energy Reviews, 2017, 69, 401 |
[50] | Xiong D., Li X., Fan L., Bai Z., Catalysts, 2018, 8(8), 301 |
[51] | Lu X. F., Xia B. Y., Zang S. Q., Lou X. W. D., Angewandte Chemie International Edition, 2020, 59(12), 4634 |
[52] | Bai Q., Shen F. C., Li S. L., Liu J., Dong L. Z., Wang Z. M., Lan Y. Q., Small Methods, 2018, 2(12), 1800049 |
[53] | Chen Y., Zhang W., Zhu Z., Zhang L., Yang J., Chen H., Zheng B., Li S., Zhang W., Wu J., Huo F., Journal of Materials Chemistry A, 2020, 8(15), 7184 |
[54] | Razzaq A. A., Yuan X., Chen Y., Hu J., Mu Q., Ma Y., Zhao X., Miao L., Ahn J.-H., Peng Y., Deng Z., Journal of Materials Chemistry A, 2020, 8(3), 1298 |
[55] | Ji D., Peng S., Fan L., Li L., Qin X., Ramakrishna S., Journal of Materials Chemistry A, 2017, 5(45), 23898 |
[56] | Etogo C. A., Huang H., Hong H., Liu G., Zhang L., Energy Storage Materials, 2020, 24, 167 |
[57] | Li B., Igawa K., Chai J., Chen Y., Wang Y., Fam D. W., Tham N. N., An T., Konno T., Sng A., Liu Z., Zhang H., Zong Y., Energy Storage Materials, 2020, 25, 137 |
[58] | Zhao Y., Lai Q., Zhu J., Zhong J., Tang Z., Luo Y., Liang Y., Small, 2018, 14(19), 1704207 |
[59] | Lian Z., Huimin L., Zhaofei O., Dalton Transactions, 2014, 43(18), 6684 |
[60] | Gong T., Qi R., Liu X., Li H., Zhang Y., Nano-Micro Letters, 2019, 11(1), 9 |
[61] | Wang Y. J., Fang B., Zhang D., Li A., Wilkinson D. P., Ignaszak A., Zhang L., Zhang J., Electrochemical Energy Reviews, 2018, 1(1), 1 |
[62] | Lai Q., Zhao Y., Liang Y., He J., Chen J., Advanced Functional Materials, 2016, 26(45), 8334 |
[63] | Xie J., Li B. Q., Peng H. J., Song Y. W., Li J. X., Zhang Z. W., Zhang Q., Angewandte Chemie International Edition, 2019, 58(15), 4963 |
[64] | Zhang X., Fan W., Zhao S., Cao R., Li C., Catalysis Science & Technology, 2019, 9(8), 1998 |
[65] | Li M., Xiong Y., Liu X., Han C., Zhang Y., Bo X., Guo L., Journal of Materials Chemistry A, 2015, 3(18), 9658 |
[66] | Tan H., Tang J., Kim J., Kaneti Y. V., Kang Y. M., Sugahara Y., Yamauchi Y., Journal of Materials Chemistry A, 2019, 7(4), 1380 |
[67] | Zhu C., Shi Q., Xu B. Z., Fu S., Wan G., Yang C., Yao S., Song J., Zhou H., Du D., Beckman S. P., Su D., Lin Y., Advanced Energy Materials, 2018, 8(29), 1801956 |
[68] | Palaniselvam T., Kashyap V., Bhange S. N., Baek J. B., Kurungot S., Advanced Functional Materials, 2016, 26(13), 2150 |
[69] | Ma S., Goenaga G. A., Call A. V., Liu D. J., Chemistry, 2011, 17(7), 2063 |
[70] | Liu C., Wang J., Li J., Liu J., Wang C., Sun X., Shen J., Han W., Wang L., Journal of Materials Chemistry A, 2017, 5(3), 1211 |
[71] | Zhang C. L., Lu B. R., Cao F. H., Wu Z. Y., Zhang W., Cong H. P., Yu S. H., Nano Energy, 2019, 55, 226 |
[72] | Zhao S., Wang J., Du X., Wang J., Cao R., Yin Y., Zhang X., Yuan Z., Xing Y., Pui D. Y. H., Li C., ACS Applied Energy Materials, 2018, 1(5), 2326 |
[73] | Zhang X., Zhao S., Fan W., Wang J., Li C., Electrochimica Acta, 2019, 301, 304 |
[74] | Ji D., Fan L., Li L., Mao N., Qin X., Peng S., Ramakrishna S., Carbon, 2019, 142, 379 |
[75] | Gou W., Bian J., Zhang M., Xia Z., Liu Y., Yang Y., Dong Q., Li J., Qu Y., Carbon, 2019, 155, 545 |
[76] | Yang L., Zeng X., Wang D., Cao D., Energy Storage Materials, 2018, 12, 277 |
[77] | Singh S. K., Kumar D., Dhavale V. M., Pal S., Kurungot S., Advanced Materials Interfaces, 2016, 3(20), 1600532 |
[78] | Gong M., Dai H., Nano Research, 2014, 8(1), 23 |
[79] | Wang Z., Ang J., Zhang B., Zhang Y., Ma X. Y. D., Yan T., Liu J., Che B., Huang Y., Lu X., Applied Catalysis B:Environmental, 2019, 254, 26 |
[80] | Cheng Q., Han S., Mao K., Chen C., Yang L., Zou Z., Gu M., Hu Z., Yang H., Nano Energy, 2018, 52, 485 |
[81] | Yu K., Shi P. H., Fan J. C., Min Y. L., Xu Q. J., Journal of Nanoparticle Research, 2019, 21(11), 1 |
[82] | Guo J., Gao M., Nie J., Yin F., Ma G., Journal of Colloid and Interface Science, 2019, 544, 112 |
[83] | Peng W., Yang X., Mao L., Jin J., Yang S., Zhang J., Li G., Chemical Engineering Journal, 2021, 407, 127157 |
[84] | Li H., An M., Zhao Y., Pi S., Li C., Sun W., Wang H. G., Applied Surface Science, 2019, 478, 560 |
[85] | Cao J., Gong H., Xie L., Li Y., Zhang N., Tian W., Zhang R., Zhou J., Wang T., Zhai Y., Li N., Luo M., Liang K., Chen P., Kong B., Materials Today Energy, 2021, 100682 |
[86] | Yao X., Li J., Zhu Y., Li L., Zhang W., Composites Part B:Engineering, 2020, 193, 108058 |
[87] | Niu Q., Chen B., Guo J., Nie J., Guo X., Ma G., Nano-Micro Letters, 2019, 11(1), 8 |
[88] | Yang L., Feng S., Xu G., Wei B., Zhang L., ACS Sustainable Chemistry & Engineering, 2019, 7(5), 5462 |
[89] | Wang Z., Ang J., Liu J., Ma X. Y. D., Kong J., Zhang Y., Yan T., Lu X., Applied Catalysis B:Environmental, 2020, 263, 118344 |
[90] | Liu P., Yao Y., Zhang S., Liu L., Zeng S., Li Z., Jiang S., Zhang Q., Zeng X., Zou J., Journal of Materials Science:Materials in Electronics, 2020, 31(10), 7596 |
[91] | Feng C., Guo Y., Xie Y., Cao X., Li S., Zhang L., Wang W., Wang J., Nanoscale, 2020, 12(10), 5942 |
[92] | Beniya A., Higashi S., Nature Catalysis, 2019, 2(7), 590 |
[93] | Zhang H., Liu G., Shi L., Ye J., Advanced Energy Materials, 2018, 8(1), 1701343 |
[94] | Hou C. C., Zou L., Sun L., Zhang K., Liu Z., Li Y., Li C., Zou R., Yu J., Xu Q., Angewandte Chemie, 2020, 59(19), 7384 |
[95] | Dong L., Zang J., Wang W., Liu X., Zhang Y., Su J., Wang Y., Han X., Li J., Journal of Colloid and Interface Science, 2020, 564, 134 |
[96] | Wang X. X., Prabhakaran V., He Y., Shao Y., Wu G., Advanced Materials, 2019, 31(31), 1805126 |
[97] | He Y., Guo H., Hwang S., Yang X., He Z., Braaten J., Karakalos S., Shan W., Wang M., Zhou H., Feng Z., More K. L., Wang G., Su D., Cullen D. A., Fei L., Litster S., Wu G., Advanced Materials, 2020, 32(46), 2003577 |
[98] | Ji D., Fan L., Li L., Peng S., Yu D., Song J., Ramakrishna S., Guo S., Advanced Materials, 2019, 31(16), 1808267 |
[99] | Huang K., Sun Y., Zhang Y., Wang X., Zhang W., Feng S., Advanced Materials, 2019, 31(38), 1801430 |
[100] | Wang H., Zhou Y., Zhang S., Deng C., Chemical Engineering Journal, 2021, 407, 127043 |
[101] | Huang Y., Miao Y. E., Lu H., Liu T., Chemistry, 2015, 21(28), 10100 |
[102] | Yan J., Wang Y., Zhang Y., Xia S., Yu J., Ding B., Advanced Materials, 2021, 33(5), 2007525 |
[103] | Lv J., Abbas S. C., Huang Y., Liu Q., Wu M., Wang Y., Dai L., Nano Energy, 2018, 43, 130 |
[104] | Zeng Z., Zhang T., Liu Y., Zhang W., Yin Z., Ji Z., Wei J., ChemSusChem, 2018, 11(3), 580 |
[105] | Zou X., Li Z., Xie Y., Wu H., Lin S., International Journal of Hydrogen Energy, 2020, 45(55), 30647 |
[106] | Zhang B., Wang S., Fan W., Ma W., Liang Z., Shi J., Liao S., Li C., Angewandte Chemie, 2016, 55(47), 14748 |
[107] | He Q., Zhou F., Zhan S., Huang N., Tian Y., Applied Surface Science, 2018, 430, 325 |
[108] | Sun Q., Wu S., Li K., Han B., Chen Y., Pang B., Yu L., Dong L., Applied Surface Science, 2020, 516, 146142 |
[109] | Tomon C., Sarawutanukul S., Duangdangchote S., Krittayavathananon A., Sawangphruk M., ECS Transactions, 2020, 97(7), 71 |
[110] | Sakai Y., Yang J., Yu R., Hojo H., Yamada I., Miao P., Lee S., Torii S., Kamiyama T., Lezaic M., Bihlmayer G., Mizumaki M., Komiyama J., Mizokawa T., Yamamoto H., Nishikubo T., Hattori Y., Oka K., Yin Y., Dai J., Li W., Ueda S., Aimi A., Mori D., Inaguma Y., Hu Z., Uozumi T., Jin C., Long Y., Azuma M., Journal of the American Chemical Society, 2017, 139(12), 4574 |
[111] | Peng S., Han X., Li L., Chou S., Ji D., Huang H., Du Y., Liu J., Ramakrishna S., Advanced Energy Materials, 2018, 8(22), 1800612 |
[1] | XU Guangyuan, LIU Qin, YAN Huan. Recent Advances of Single-atom Catalysts for Electro-catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1146-1150. |
[2] | BU Ran, LU Yingying, ZHANG Bing. Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1151-1162. |
[3] | SHU Chengyong, GAN Zhuofan, ZHOU Jia, WANG Zhen, TANG Wei. Highly Efficient Oxygen Reduction Reaction Fe-N-C Cathode in Long-durable Direct Glycol Fuel Cells [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1268-1274. |
[4] | ZHENG Meng, WANG Jin. Regulating the Oxygen Affinity of Single Atom Catalysts by Dual-atom Design for Enhanced Oxygen Reduction Reaction Activity [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1275-1281. |
[5] | QI Yuxue, LI Tingting, HU Yajie, XIANG Jiahong, SHAO Wenqian, CHEN Wenhua, MU Xueqin, LIU Suli, CHEN Changyun, YU Min, MU Shichun. Single-atom Fe Embedded Co3S4 for Efficient Electrocatalytic Oxygen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1282-1286. |
[6] | SUN Bolun, CHAO Danming, WANG Ce. Piezoelectric Nanogenerator Based on Electrospun Cellulose Acetate/Nanocellulose Crystal Composite Membranes for Energy Harvesting Application [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1005-1011. |
[7] | ZHENG Ruonan, ZHAI Zihui, QIU Chenxi, GAO Rui, LV Yang, SONG Yujiang. Highly Active Electrocatalyst Derived from ZIF-8 Decorated with Iron(III) and Cobalt(III) Porphyrin Toward Efficient Oxygen Reduction in Both Alkaline and Acidic Media [J]. Chemical Research in Chinese Universities, 2022, 38(4): 961-967. |
[8] | CHEN Yu, CHEN Yongting, LIAO Yuxiang, CHEN Shengli. A Chemical Dealloying Approach for Pt Surface-enriched Pt3Co Alloy Nanoparticles as Oxygen Reduction Reaction Electrocatalysts [J]. Chemical Research in Chinese Universities, 2022, 38(4): 991-998. |
[9] | CHANG Shunkai, LI Cuiyan, LI Hui, ZHU Liangkui, FANG Qianrong. Stable Thiophene-sulfur Covalent Organic Frameworks for Oxygen Reduction Reaction(ORR) [J]. Chemical Research in Chinese Universities, 2022, 38(2): 396-401. |
[10] | YANG Siran, AI Feixue, LI Ziping, ZHAO Guiyan, BI Yanfeng. N-Doped Carbon Nanofibers Encapsulating CoO@Co9S8 Nanoparticles: Preparation from S-Rich Co32 Coordination Cluster Precursors by Electrospinning and Application for Superior Li-ion Storage [J]. Chemical Research in Chinese Universities, 2022, 38(2): 603-608. |
[11] | YU Xiaoming, MA Yunchao, LI Cuiyan, GUAN Xinyu, FANG Qianrong, QIU Shilun. A Nitrogen, Sulfur co-Doped Porphyrin-based Covalent Organic Framework as an Efficient Catalyst for Oxygen Reduction [J]. Chemical Research in Chinese Universities, 2022, 38(1): 167-172. |
[12] | WONG Hon Ho, SUN Mingzi, HUANG Bolong. Synergistic Effect of Graphdiyne-based Electrocatalysts [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1242-1256. |
[13] | LI Meiping, WANG Kaihang, LV Qing. N,P-co-Doped Graphdiyne as Efficient Metal-free Catalysts for Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1283-1288. |
[14] | WANG Jun, FU Wanlin, XU Wanlin, WU Min, SUN Yueming, DAI Yunqian. Oxide Nanofibers as Catalysts Toward Energy Conversion and Environmental Protection [J]. Chemical Research in Chinese Universities, 2021, 37(3): 366-378. |
[15] | HUANG Hedong, GUO Zeyu, YANG Pengyan, CHEN Peng, Wu Jie. Electrical Conductivity, Oil Absorption and Electric Heating of Carbon Black-modified Carbon Nanofibers [J]. Chemical Research in Chinese Universities, 2021, 37(3): 541-548. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||