Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3): 366-378.doi: 10.1007/s40242-021-1110-x
• Review • Previous Articles Next Articles
WANG Jun, FU Wanlin, XU Wanlin, WU Min, SUN Yueming, DAI Yunqian
Received:
2021-03-14
Revised:
2021-04-18
Online:
2021-06-01
Published:
2021-05-12
Contact:
DAI Yunqian
E-mail:daiy@seu.edu.cn
Supported by:
WANG Jun, FU Wanlin, XU Wanlin, WU Min, SUN Yueming, DAI Yunqian. Oxide Nanofibers as Catalysts Toward Energy Conversion and Environmental Protection[J]. Chemical Research in Chinese Universities, 2021, 37(3): 366-378.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Brown T. D., Daltona P. D., Hutmacher D. W., Prog. Poly. Sci., 2016, 56, 116 |
[2] | Ramaseshan R., Sundarrajan S., Jose R., Ramakrishna S., J. Appl. Phys., 2007, 102, 111101 |
[3] | Dai Y. Q., Liu W. Y., Formo E., Sun Y. M., Xia Y. N., Polym. Adv. Technol., 2011, 22(3), 326 |
[4] | Lu X. F., Wang C., Wei Y., Small, 2009, 5(21), 2349 |
[5] | Lu X. F., Wang C., Favier F., Pinna N., Adv. Energy Mater., 2017, 7, 1601301 |
[6] | Liu D., Wan J., Wang H., Pang G., Tang Z., Inorg. Chem. Commun., 2019, 102, 203 |
[7] | Gupta R., Kumar A., Biomed. Mater., 2008, 3, 034005 |
[8] | Takamura N., Taguchi K., Gunji T., Abe Y., J. Sol-Gel Sci. Techn., 1999, 16(3), 227 |
[9] | Su L., Zhu K., Qiu J., Ji H., J. Mater. Sci., 2010, 45(12), 3311 |
[10] | Li D., Xia Y. N., Nano Lett., 2003, 3(4), 555 |
[11] | Yang X. G., Shao C. L., Liu Y. C., Mu R. X., Guan H. Y., Thin Solid Films, 2005, 478(1/2), 228 |
[12] | Cui Z., Wang S., Zhang Y., Cao M., Electrochim. Acta, 2015, 182, 507 |
[13] | Ban C., Chernova N. A., Whittingham M. S., Electrochem. Commun., 2009, 11(3), 522 |
[14] | Formo E., Camargo P. H. C., Lim B., Jiang M., Xia Y., Chem. Phys. Lett., 2009, 476(1-3), 56 |
[15] | Zheng W., Li Z. Y., Zhang H. N., Wang W., Wang Y., Wang C., Mater. Res. Bull., 2009, 44(6), 1432 |
[16] | Hwang S. H., Song J., Jung Y., Kweon O. Y., Song H., Jang J., Chem. Commun., 2011, 47(32), 9164 |
[17] | Mahmoodi N. M., Keshavarzi S., Oveisi M., Rahimi S., Hayati B., J. Mol. Liq., 2019, 291, 111333 |
[18] | Liu R., Ye H., Xiong X., Liu H., Mater. Chem. Phys., 2010, 121(3), 432 |
[19] | Du X., Dong F., Tang Z., Zhang J., Appl. Surf. Sci., 2020, 505, 144471 |
[20] | Huang J., Liu X., Chen G., Zhang N., Ma R., Qiu G., Solid State Sci., 2018, 82, 24 |
[21] | Lu Q., Liu S., Ren M., Song L., Zhao G., J. Sol-Gel Sci. Techn., 2012, 61(1), 169 |
[22] | Ouyang W., Liu S., Yao K., Zhao L., Cao L., Jiang S., Compos. Commun., 2018, 9, 76 |
[23] | Tsang CHA., Li K., Zeng Y., Zhao W., Zhang T., Zhan Y., Environ. Int., 2019, 125, 200 |
[24] | Fu W., Li Z., Xu W., Wang Y., Sun Y., Dai Y., Mater. Today Nano, 2020, 11, 100088 |
[25] | Fu W., Dai Y., Li J. P. H, Liu Z., Yang Y., Sun Y., ACS Appl. Mater. Interfaces, 2017, 9(25), 21258 |
[26] | Long C., Li X., Guo J., Shi Y., Liu S., Tang Z., Small Methods, 2019, 3, 1800369 |
[27] | Yan C., Chen G., Zhou X., Sun J., Lv C., Adv. Funct. Mater., 2016, 26(9), 1428 |
[28] | Choi S. H., Ankonina G., Youn D. Y., Oh S. G., Hong J. M., Rothschild A., ACS Nano, 2009, 3(9), 2623 |
[29] | Li L. L., Peng S. J., Lee J. K. Y., Ji D. X., Srinivasan M., Ramakrishna S., Nano Energy, 2017, 39, 111 |
[30] | Zhu M., Tang J., Wei W., Li S., Mater. Chem. Front., 2020, 4(4), 1105 |
[31] | Oh J. H., Jo M. S., Jeong S. M., Cho C., Kang Y. C., Cho J. S., J. Ind. Eng. Chem., 2019, 77, 76 |
[32] | Dai Y. Q., Chai Y. L., Sun Y. B., Fu W. L., Wang X. T., Gu Q., Zeng T. H., Sun Y. M., J. Mater. Chem. A, 2015, 3(1), 125 |
[33] | Dai Y., Tian J., Fu W., J. Mater. Sci., 2019, 54(14), 10141 |
[34] | Liu S., Tian J., Yin K., Li Z., Meng X., Zhu M., Dai Y., Mater. Today Chem., 2020, 17, 100333 |
[35] | Fu W., Dai Y., Tian J., Huang C., Liu Z., Liu K., Nanotechnology, 2018, 29(34), 345607 |
[36] | Tiwari J. N., Tiwari R. N., Kim K. S., Prog. Mater. Sci., 2012, 57(4), 724 |
[37] | Wang X., Xi M., Fong H., Zhu Z., ACS Appl. Mater. Interfaces, 2014, 6(18), 15925 |
[38] | Li B., Hao Y., Zhang B., Shao X., Hu L., Appl. Catal. A:Gen., 2017, 531, 1 |
[39] | Dai Y., Cobley C. M., Zeng J., Sun Y., Xia Y., Nano Lett., 2009, 9(6), 2455 |
[40] | Dai Y., Qi X., Fu W., Huang C., Wang S., Zhou J., RSC Adv., 2017, 7(27), 16379 |
[41] | Fu W., Liu K., Zou X., Xu W., Zhao J., Zhu M., Sun Y., ACS Sustain. Chem. Eng., 2019, 7(15), 12750 |
[42] | Dai Y., Lu X., McKiernan M., Lee E. P., Sun Y., Xia Y., J. Mater. Chem., 2010, 20(16), 3157 |
[43] | Fu W., Li Z., Wang Y., Sun Y., Dai Y., Chem. Eng. J., 2020, 401, 126013 |
[44] | Schneider J., Matsuoka M., Takeuchi M., Zhang J. L., Horiuchi Y., Anpo M., Chem. Rev., 2014, 114(19), 9919 |
[45] | Fujishima A., Honda K., Nature, 1972, 238(5358), 37 |
[46] | Chuangchote S., Jitputti J., Sagawa T., Yoshikawa S., ACS Appl. Mater. Interfaces, 2009, 1(5), 1140 |
[47] | Singh P., Sharma K., Hasija V., Sharma V., Sharma S., Raizada P., Mater. Today Chem., 2019, 14, 100186 |
[48] | Patel A. C., Li S., Wang C., Zhang W., Wei Y., Chem. Mater., 2007, 19(6), 1231 |
[49] | Rajak A., Miftahul M. M., Abdullah M., Khairurrijal., Mater. Sci. Forum., 2015, 827, 7 |
[50] | Lee S. S., Bai H., Liu Z., Sun D. D., Water Res., 2013, 47(12), 4059 |
[51] | Li L., Cheng B., Wang Y., Yu J., J. Colloid Interface Sci., 2015, 449, 115 |
[52] | Barakat N. A. M., Taha A., Motlak M., Nassar M. M., Mahmoud M. S., Al-Deyab S. S., Appl. Catal. A:Gen.,2014, 481, 19 |
[53] | Xu F., Zhang J., Zhu B., Yu J., Xu J., Appl. Catal. B:Environ., 2018, 230, 194 |
[54] | Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I. B., Norskov J. K., Jaramillo T. F., Science, 2017, 355, 146 |
[55] | Suen N. T., Hung S. F., Quan Q., Zhang N., Xu Y. J., Chen H. M., Chem. Soc. Rev., 2017, 46(2), 337 |
[56] | Xue J., Wu T., Dai Y., Xia Y., Chem. Rev., 2019, 119(8), 5298 |
[57] | Hosseini S. R., Ghasemi S., Kamali-Rousta M., J. Power Sources, 2017, 343, 467 |
[58] | Chao G., An X., Zhang L., Tian J., Fan W., Liu T., Compos. Commun., 2021, 24, 100603 |
[59] | Long C., Wang K., Shi Y., Yang Z., Zhang X., Zhang Y.,Tang Z., Inorg. Chem. Front., 2019, 6(10), 2900 |
[60] | Zhang W., Wang H., Guan K., Wei Z., Zhang X., Meng J., ACS Appl. Mater. Interfaces, 2019, 11(30), 26830 |
[61] | Chen L., Xu X., Yang W., Jia J., Chin. Chem. Lett., 2020, 31(3), 626 |
[62] | Du Q., Wu J., Yang H., ACS Catal., 2014, 4(1), 144 |
[63] | Savych I., Subianto S., Nabil Y., Cavaliere S., Jones D., Roziere J., Phys. Chem. Chem. Phys., 2015, 17(26), 16970 |
[64] | Park H. W., Lee D. U., Zamani P., Seo M. H., Nazar L. F., Chen Z., Nano Energy, 2014, 10, 192 |
[65] | Bauer A., Chevallier L., Hui R., Cavaliere S., Zhang J., Jones D., Electrochim. Acta, 2012, 77, 1 |
[66] | Kakoria A., Devi B., Anand A., Halder A., Koner R. R., Sinha-Ray S., ACS Appl. Nano Mater., 2019, 2(1), 64 |
[67] | Zhang X., Gong Y., Li S., Sun C., ACS Catal., 2017, 7(11), 7737 |
[68] | Bian J., Su R., Yao Y., Wang J., Zhou J., Li F., ACS Appl. Energy Mater., 2019, 2(1), 923 |
[69] | Zhang Y. Q., Tao H. B., Chen Z., Li M., Sun Y. F., Hua B., J. Mater. Chem. A, 2019, 7(46), 26607 |
[70] | Piumetti M., Bensaid S., Russo N., Fino D., Appl. Catal. B:Environ., 2016, 180, 271 |
[71] | Obeid E., Lizarraga L., Tsampas M. N., Cordier A., Boreave A., Steil M. C., J. Catal., 2014, 309, 87 |
[72] | Pena M. A., Fierro J. L. G., Chem. Rev., 2001, 101(7), 1981 |
[73] | Lee C., Jeon Y., Hata S., Park J. I., Akiyoshi R., Saito H., Appl. Catal. B:Environ., 2016, 191, 157 |
[74] | Dai Y., Lu P., Cao Z., Campbell C. T., Xia Y., Chem. Soc. Rev., 2018, 47(12), 4314 |
[75] | Campbell C. T., Mao Z., ACS Catal., 2017, 7(12), 8460 |
[76] | Rahmati M., Safdari M. S., Fletcher T. H., Argyle M. D., Bartholomew C. H., Chem. Rev., 2020, 120(10), 4455 |
[77] | Rosman N., Salleh W. N. W., Aziz F., Ismail A. F., Harun Z., Bahri S. S., Catalysts, 2019, 9, 565 |
[78] | Gupta D., Venugopal J., Mitra S., Dev VRG., Ramakrishna S., Biomaterials, 2009, 30(11), 2085 |
[79] | Guo D., Wang J., Zhang L., Chen X., Wan Z., Xi B., Small, 2020, 16, 2002432 |
[80] | He Y., Guo H., Hwang S., Yang X., He Z., Braaten J., Adv. Mater., 2020, 32, 2003577 |
[81] | Dai Y., Lim B., Yang Y., Cobley C. M., Li W., Cho E. C., Grayson B., Fanson T. P., Campbell T. C., Sun Y., Xia Y., Angew. Chem. Int. Ed., 2010, 49(44), 8165 |
[82] | Li Z., Zhang H., Zheng W., Wang W., Huang H., Wang C., J. Am. Chem. Soc., 2008, 130(15), 5036 |
[83] | Zhang H., Li Z., Liu L., Xu X., Wang Z., Wang W., Sens. Actuators B:Chem., 2010, 147(1), 111 |
[84] | Wang W., Li Z., Zheng W., Huang H., Wang C., Sun J., Sens. Actuators B:Chem., 2010, 143(2), 754 |
[85] | Liu P., Hou J., Zhang Y., Li L., Lu X., Tang Z., Inorg. Chem. Front., 2020, 7(13), 2560 |
[86] | Xu B., Qi S., Jin M., Cai X., Lai L., Sun Z., Chin. Chem. Lett., 2019, 30(12), 2053 |
[87] | Li X., Wang C., Yang Y., Wang X. F., Zhu M. F., Hsiao B. S., ACS Appl. Mater. Interfaces, 2014, 6(4), 2431 |
[88] | Lin P., Pan C., Wang Z. L., Mater. Today Nano, 2018, 4, 17 |
[89] | Li W., Wang Y., Ji B., Jiao X., Chen D., RSC Adv., 2015, 5(72), 58120 |
[90] | Wang X., Dou L., Yang L., Yu J., Ding B., J. Hazard. Mater., 2017, 324, 203 |
[91] | Dai Y., Formo E., Li H., Xue J., Xia Y., Chemsuschem, 2016, 9(20), 2912 |
[92] | Formo E., Lee E., Campbell D., Xia Y., Nano Lett., 2008, 8(2), 668 |
[93] | Sun B., Long Y. Z., Zhang H. D., Li M. M., Duvail J. L., Jiang X. Y., Prog. Poly. Sci., 2014, 39(5), 862 |
[94] | Kim T. W., Park S. J., J. Colloid Interface Sci., 2017, 486, 287 |
[95] | Meng X., Xu W., Li Z., Yang J., Zhao J., Zou X., Sun Y., Dai Y., Adv. Fiber Mater., 2020, 2, 93 |
[96] | Yin H., Zhao S., Wan J., Tang H., Chang L., He L., Zhao H., Gao Y., Tang Z., Adv. Mater., 2013, 25(43), 6270 |
[97] | Meng X., Peng X., Xue J., Wei Y., Sun Y., Dai Y., J. Mater. Chem. A, 2021, DOI:10.1039/D1TA02004H |
[98] | Tanimu A., Jaenicke S., Alhooshani K., Chem. Eng. J., 2017, 327, 792 |
[99] | Global Nanofibers Market, Trends Analysis & Forecasts to 2021, Research and Markets, https://www.researchandmarkets.com/research/5psrpd/global_nanofibers |
[100] | Lu X. F., Liu X. C., Zhang W. J., Wang C., Wei Y., J. Colloid Interface Sci., 2006, 298(2), 996 |
[101] | Akampumuza O., Gao H., Zhang H., Wu D., Qin X. H., Macromol Mater. Eng., 2018, 303, 1700269 |
[102] | Persano L., Camposeo A., Tekmen C., Pisignano D., Macromol Mater. Eng., 2013, 298(5), 504 |
[103] | Jia C., Liu Y., Li L., Song J., Wang H., Liu Z., Li Z., Li B., Fang M., Wu H., Nano Lett., 2020, 20(7), 4993 |
[104] | Khalid B., Bai X., Wei H., Huang Y., Wu H., Cui Y., Nano Lett., 2017, 17(2), 1140 |
[1] | LIU Zailun, SUN Like, ZHANG Qitao, TENG Zhenyuan, SUN Hongli, SU Chenliang. TiO2-supported Single-atom Catalysts: Synthesis, Structure, and Application [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1123-1138. |
[2] | WU Fan, LIU Pengxin. Surface Organometallic Chemistry for Single-site Catalysis and Single-atom Catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1139-1145. |
[3] | XU Guangyuan, LIU Qin, YAN Huan. Recent Advances of Single-atom Catalysts for Electro-catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1146-1150. |
[4] | BU Ran, LU Yingying, ZHANG Bing. Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1151-1162. |
[5] | MA Yanfu, WANG Liwei, LIU Jian. Single Atom Catalysts in Liquid Phase Selective Hydrogenations [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1163-1171. |
[6] | WANG Guowei, KE Xiaoxing, SUI Manling. Advanced TEM Characterization for Single-atom Catalysts: from Ex-situ Towards In-situ [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1172-1184. |
[7] | FAN Kui, SUN Yining, XU Pengcheng, GUO Jian, LI Zhenhua, SHAO Mingfei. Single-atom Catalysts Based on Layered Double Hydroxides [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1185-1196. |
[8] | MIAO Tianchang, DI Xin, HAO Feini, ZHENG Gengfeng, HAN Qing. Polymeric Carbon Nitride-based Single Atom Photocatalysts for CO2 Reduction to C1 Products [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1197-1206. |
[9] | TENG Zhenyuan, YANG Hongbin, ZHANG Qitao, OHNO Teruhisa. Carrier Dynamics and Surface Reaction Boosted by Polymer-based Single-atom Photocatalysts [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1207-1218. |
[10] | MA Chunrong, SONG Bingyi, MA Zhentao, WANG Xiaoqian, TIAN Lin, ZHANG Haoran, CHEN Cai, ZHENG Xusheng, YANG Li-ming, WU Yuen. A Supported Palladium on Gallium-based Liquid Metal Catalyst for Enhanced Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1219-1225. |
[11] | QIAN Shengjie, WANG Yanggang, LI Jun. Single Iron-dimer Catalysts on MoS2 Nanosheet for Potential Nitrogen Activation [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1226-1231. |
[12] | SONG Jingting, LIU Jia, LOH Kian Ping, CHEN Zhongxin. Ultrahigh Loading Copper Single Atom Catalyst for Palladium-free Wacker Oxidation [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1239-1242. |
[13] | LI Yang, WANG Xian, LIU Jie, JIN Zhao, LIU Changpeng, GE Junjie, XING Wei. Anode Catalytic Dependency Behavior on Ionomer Content in Direct CO Polymer Electrolyte Membrane Fuel Cell [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1251-1257. |
[14] | ZHANG Xingcong, ZHONG Yunzhu, CHEN Hongyu, CHENG Yujie, SUN Qingdi, ZHANG Hao, HE Qian, ZHANG Ying, GUO Guanghui, HE Xiaohui, JI Hongbing. Synthesis of Nitrogen-doped Carbon Supported Cerium Single Atom Catalyst by Ball Milling for Selective Oxidation of Ethylbenzene [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1258-1262. |
[15] | ZHENG Meng, WANG Jin. Regulating the Oxygen Affinity of Single Atom Catalysts by Dual-atom Design for Enhanced Oxygen Reduction Reaction Activity [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1275-1281. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||