Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4): 648-661.doi: 10.1007/s40242-020-0171-6
• Reviews • Previous Articles Next Articles
DONG Wenfei1, CHEN Xiaoyu1, PENG Juan1, LIU Wanyi1, JIN Xiaoyong1, NI Gang1, LIU Zheng2,3,4
Received:
2020-06-06
Revised:
2020-07-07
Online:
2020-08-01
Published:
2020-07-30
Contact:
PENG Juan, LIU Zheng
E-mail:z.liu@ntu.edu.sg;pengjuan@nxu.edu.cn
Supported by:
DONG Wenfei, CHEN Xiaoyu, PENG Juan, LIU Wanyi, JIN Xiaoyong, NI Gang, LIU Zheng. Recent Progress on 2D Transition Metal Compounds-based Electrocatalysts for Efficient Nitrogen Reduction[J]. Chemical Research in Chinese Universities, 2020, 36(4): 648-661.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Crabtree G. W., Dresselhaus M. S., Buchanan M. V., Phys Today, 2004, 57, 39 |
[2] | Nocera D. G., Acc. Chem. Res., 2012, 45, 767 |
[3] | Zhu X., Mou S., Peng Q., Liu Q., Luo Y., Chen G., Gao S., Sun X., J. Mater. Chem. A, 2020, 8, 1545 |
[4] | Yin H., Dou Y., Chen S., Zhu Z., Liu P., Zhao H., Adv. Mater., 2020, 32, 1904870 |
[5] | Gilbert N., Nature, 2012, 483, 525 |
[6] | Schlogl R., Angew. Chem. Int. Ed. Engl., 2003, 42, 2004 |
[7] | Klerke A., Christensen C. H., Norskov J. K., Vegge T., J. Mater. Chem., 2008, 18, 2304 |
[8] | Kuang M., Wang Y., Fang W., Tan H., Chen M., Yao J., Liu C., Xu J., Zhou K., Yan Q., Adv. Mater., 2020, 2002189 |
[9] | Chen C., Zhu X., Wen X., Zhou Y., Zhou L., Li H., Tao L., Li Q., Du S., Liu T., Yan D., Xie C., Zou Y., Wang Y., Chen R., Huo J., Li Y., Cheng J., Su H., Zhao X., Cheng W., Liu Q., Lin H., Luo J., Chen J., Dong M., Cheng K., Li C., Wang S., Nat. Chem., 2020, 1, 1755 |
[10] | Guo C. X., Ran J. R., Vasileff A., Qiao S. Z., Energ. Environ. Sci., 2018, 11, 45 |
[11] | van Der Ham C. J., Koper M. T., Hetterscheid D. G., Chem. Soc. Rev., 2014, 43, 5183 |
[12] | Tanabe Y., Nishibayashi Y., Coordin. Chem. Rev., 2013, 257, 2551 |
[13] | Rod T. H., Logadottir A., Norskov J. K., J. Chem. Phys., 2000, 112, 5343 |
[14] | Jia H. P., Quadrelli E. A., Chem. Soc. Rev., 2014, 43, 547 |
[15] | Tan C., Cao X., Wu X. J., He Q., Yang J., Zhang X., Chen J., Zhao W., Han S., Nam G. H., Sindoro M., Zhang H., Chem. Rev., 2017, 117, 6225 |
[16] | Dong R., Zhang T., Feng X., Chem. Rev., 2018, 118, 6189 |
[17] | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306, 666 |
[18] | Jin H., Guo C., Liu X., Liu J., Vasileff A., Jiao Y., Zheng Y., Qiao S. Z., Chem. Rev., 2018, 118, 6337 |
[19] | Yang Q., Su Y., Chi C., Cherian C. T., Huang K., Kravets V. G., Wang F. C., Zhang J. C., Pratt A., Grigorenko A. N., Guinea F., Geim A. K., Nair R. R., Nat. Mater., 2017, 16, 1198 |
[20] | Peng J., Dong W., Wang Z., Meng Y., Liu W., Song P., Liu Z., Materials Today Advances, 2020, 8, 10081 |
[21] | Chia X. Y., Pumera M., Nat. Catal., 2018, 1, 909 |
[22] | Cui X. Y., Tang C., Zhang Q., Adv. Energy Mater., 2018, 8, 1800369 |
[23] | Lu Q., Yu Y., Ma Q., Chen B., Zhang H., Adv. Mater., 2016, 28, 1917 |
[24] | Yu L. L., Qin J. Z., Zhao W. J., Zhang Z. G., Ke J., Liu B. J., Int. J. Photoenergy, 2020, 2020, 5251431 |
[25] | Li Q. Y., He L. Z., Sun C. H., Zhang X. W., J Phys. Chem. C, 2017, 121, 27563 |
[26] | Abghoui Y., Garden A. L., Hlynsson V. F., Bjorgvinsdottir S., Olafsdottir H., Skulason E., Phys. Chem. Chem. Phys., 2015, 17, 4909 |
[27] | Hu B., Hu M., Seefeldt L., Liu T. L., ACS. Energy Lett., 2019, 4, 1053 |
[28] | Lv C., Qian Y., Yan C., Ding Y., Liu Y., Chen G., Yu G., Angew. Chem. Int. Ed. Engl., 2018, 57, 10246 |
[29] | Shipman M. A., Symes M. D., Catal Today, 2017, 286, 57 |
[30] | Ling C., Zhang Y., Li Q., Bai X., Shi L., Wang J., J. Am. Chem. Soc., 2019, 141, 18264 |
[31] | Laird T. J. O. P. R., Development, 1997, 1, 391 |
[32] | Fang Y., Xue Y., Li Y., Yu H., Hui L., Liu Y., Xing C., Zhang C., Zhang D., Wang Z., Chen X., Gao Y., Huang B., Li Y., Angew. Chem. Int. Ed. Engl., 2020, 59, 2 |
[33] | Bao D., Zhang Q., Meng F. L., Zhong H. X., Shi M. M., Zhang Y., Yan J. M., Jiang Q., Zhang X. B., Adv. Mater., 2017, 29, 1604799 |
[34] | Vanselow A. P. J. I., Edition E. C. A., 1939, 12, 516 |
[35] | Yang D. S., Chen T., Wang Z. J., J. Mater. Chem. A, 2017, 5, 18967 |
[36] | Bao D., Zhang Q., Meng F. L., Zhong H. X., Shi M. M., Zhang Y., Yan J. M., Jiang Q., Zhang X. B., Adv. Mater., 2017, 29, 1604799.1 |
[37] | Licht S., Cui B., Wang B., Li F. F., Lau J., Liu S., Science, 2014, 345, 637 |
[38] | Thomas D. H., Rey M., Jackson P. E., J. Chromatogr. A, 2002, 956, 181 |
[39] | Michalski R., Kurzyca I., Polish Journal of Environmental Studies, 2006, 15, 5 |
[40] | Michalski R., Crit. Rev. Anal. Chem., 2009, 39, 230 |
[41] | Bruzzoniti M. C., de Carlo R. M., Fungi M., J. Sep. Sci., 2008, 31, 3182 |
[42] | Zhu Y., Yuan D. X., Huang Y. M., Ma J., Feng S. C., Lin K. N., Marine Chemistry, 2014, 162, 114 |
[43] | Zhang L., Ji X., Ren X., Ma Y., Shi X., Tian Z., Asiri A. M., Chen L., Tang B., Sun X., Adv. Mater., 2018, 30, 1800191 |
[44] | Zhou Y., Yu X. P., Wang X. Y., Chen C., Wang S. T., Zhang J., Electrochim Acta, 2019, 317, 34 |
[45] | Suryanto B. H. R., Wang D., Azofra L. M., Harb M., Cavallo L., Jalili R., Mitchell D. R. G., Chatti M., MacFarlane D. R., ACS Energy Lett., 2018, 4, 430 |
[46] | Liang J., Ma S., Li J., Wang Y., Wu J., Zhang Q., Liu Z., Yang Z., Qu K., Cai W., J. Mater. Chem. A, 2020, 8, 10426 |
[47] | Zhang J., Tian X., Liu M., Guo H., Zhou J., Fang Q., Liu Z., Wu Q., Lou J., J. Am. Chem. Soc., 2019, 141, 19269 |
[48] | Li X. H., Ren X., Liu X. J., Zhao J. X., Sun X., Zhang Y., Kuang X., Yan T., Wei Q., Wu D., J. Mater. Chem. A, 2019, 7, 2524 |
[49] | Zhao X., Lan X., Yu D., Fu H., Liu Z., Mu T., Chem. Commun.(Camb.), 2018, 54, 13010 |
[50] | Wang H. B., Wang J. Q., Zhang R., Cheng C. Q., Qu K. W., Yang Y. J., Mao J., Liu H., Du M., Dong C. K., Du X. W., ACS Catal., 2020, 10, 4914 |
[51] | Li P., Fu W., Zhuang P., Cao Y., Tang C., Watson A. B., Dong P., Shen J., Ye M., Small, 2019, 15, 1902535 |
[52] | Lai F. L., Chen N., Ye X. B., He G. J., Zong W., Holt K. B., Pan B. C., Parkin I. P., Liu T. X., Chen R. J., Adv. Funct. Mater., 2020, 30, 1907376 |
[53] | Jia K., Wang Y., Qiu L., Gao J. J., Pan Q., Kong W. H., Zhang X. X., Alshehri A. A., Alzahrani K. A., Zhong B. H., Guo X. D., Yang L., Inorg. Chem. Front., 2019, 6, 1986 |
[54] | Chu K., Wang J., Liu Y. P., Li Q. Q., Guo Y. L., J. Mater. Chem. A, 2020, 8, 7117 |
[55] | Wang Y., Chen A. R., Lai S. H., Peng X. Y., Zhao S. Z., Hu G. Z., Qiu Y., Ren J. Q., Liu X. J., Luo J., J. Catal., 2020, 381, 78 |
[56] | Fang C. H., Bi T., Xu X. X., Yu N., Cui Z. Q., Jiang R. B., Geng B. Y., Adv. Mater. Interfaces., 2019, 6, 1901034 |
[57] | Zhang R., Ren X., Shi X., Xie F., Zheng B., Guo X., Sun X., ACS Appl. Mater. Interfaces, 2018, 10, 28251 |
[58] | Li X. H., Li L., Ren X., Wu D., Zhang Y., Ma H. M., Sun X., Du B., Wei Q., Li B. H., Ind. Eng. Che. Res., 2018, 57, 16622 |
[59] | Han J. R., Ji X. Q., Ren X., Cui G. W., Li L., Xie F. Y., Wang H., Li B. H., Sun X. P., J. Mater. Chem. A, 2018, 6, 12974 |
[60] | Kong W., Zhang R., Zhang X., Ji L., Yu G., Wang T., Luo Y., Shi X., Xu Y., Sun X., Nanoscale, 2019, 11, 19274 |
[61] | Zhao S., Liu H. X., Qiu Y., Liu S. Q., Diao J. X., Chang C. R., Si R., Guo X. H., J. Mater. Chem. A, 2020, 8, 6586 |
[62] | Cheng S., Gao Y. J., Yan Y. L., Gao X., Zhang S. H., Zhuang G. L., Deng S. W., Wei Z. Z., Zhong X., Wang J. G., J. Energy Chem., 2019, 39, 144 |
[63] | Zheng J., Lyu Y., Qiao M., Veder J. P., Marco R. D., Bradley J., Wang R., Li Y., Huang A., Jiang S. P., Wang S., Angew. Chem. Int. Ed. Engl., 2019, 58, 18604 |
[64] | Liu Y. T., Chen X., Yu J., Ding B., Angew. Chem. Int. Ed. Engl., 2019, 58, 18903 |
[65] | Chen Y. J., Wu B., Sun B. L., Wang N., Hu W. C., Komarneni S., ACS Sustain. Chem. Eng., 2019, 7, 18874 |
[66] | Wang X. H., Wang J., Li Y. B., Chu K., Chemcatchem, 2019, 11, 4529 |
[67] | Liu Y. P., Li Y. B., Zhang H., Chu K., Inorg. Chem., 2019, 58, 10424 |
[68] | Luo Y. R., Chen G. F., Ding L., Chen X. Z., Ding L. X., Wang H. H., Joule, 2019, 3, 279 |
[69] | Zhao J., Zhang L., Xie X. Y., Li X., Ma Y., Liu Q., Fang W. H., Shi X., Cui G., Sun X., J. Mater. Chem. A, 2018, 6, 24031 |
[70] | Li T., Yan X., Huang L., Li J., Yao L., Zhu Q., Wang W., Abbas W., Naz R., Gu J., Liu Q., Zhang W., Zhang D., J. Mater. Chem. A, 2019, 7, 14462 |
[71] | Liu A., Gao M., Ren X., Meng F., Yang Y., Yang Q., Guan W., Gao L., Liang X., Ma T., Nanoscale, 2020, 12, 10933 |
[72] | Zhang J., Yang L., Wang H., Zhu G., Wen H., Feng H., Sun X., Guan X., Wen J., Yao Y., Inorg. Chem., 2019, 58, 5414 |
[73] | Fang Y. F., Liu Z. C., Han J. R., Jin Z. Y., Han Y. Q., Wang F. X., Niu Y. S., Wu Y. P., Xu Y. H., Adv. Energy Mater., 2019, 9, 1803406 |
[74] | Kong W., Gong F., Zhou Q., Yu G., Ji L., Sun X., Asiri A. M., Wang T., Luo Y., Xu Y., J. Mater. Chem. A, 2019, 7, 18823 |
[75] | Zhang L., Ji X. Q., Ren X., Luo Y. L., Shi X. F., Asiri A. M., Zheng B. Z., Sun X. P., ACS Sustain Chem. Eng., 2018, 6, 9550 |
[76] | Zhang R., Zhang Y., Ren X., Cuo G. W., Asiri A. M., Zheng B. Z., Sun X. P., ACS Sustain Chem. Eng., 2018, 6, 9545 |
[77] | Jin H., Li L., Liu X., Tang C., Xu W., Chen S., Song L., Zheng Y., Qiao S. Z., Adv. Mater., 2019, 31, 1902709 |
[78] | Zhang R., Ji L., Kong W., Wang H., Zhao R., Chen H., Li T., Li B., Luo Y., Sun X., Chem. Commun.(Camb.), 2019, 55, 5263 |
[79] | Yu J., Li C., Li B., Zhu X., Zhang R., Ji L., Tang D., Asiri A. M., Sun X., Li Q., Liu S., Luo Y., Chem. Commun.(Camb.), 2019, 55, 6401 |
[80] | Wu D., Wang H., Huang H., Zhang R., Ji L., Chen H., Luo Y., You J., Tang D., Zhang Z., Sun X., Chem. Commun.(Camb.), 2019, 55, 7546 |
[81] | Wang H., Si J., Zhang T., Li Y., Yang B., Li Z., Chen J., Wen Z., Yuan C., Lei L., Hou Y., Appl. Catal., B, 2020, 270, 118892 |
[82] | Li F., Tang Q., Nanoscale, 2019, 11, 18769 |
[83] | Ma B. Y., Peng Y., Ma D. W., Deng Z., Lu Z. S., Appl. Surf. Sci., 2019, 495, 143463 |
[84] | Li M., Cui Y., Sun L., Zhang X., Peng L., Huang Y., Inorg. Chem., 2020, 59, 4858 |
[85] | Zhai X., Li L., Liu X., Li Y., Yang J., Yang D., Zhang J., Yan H., Ge G., Nanoscale, 2020, 12, 10035 |
[86] | Yang T., Song T. T., Zhou J., Wang S. J., Chi D. Z., Shen L., Yang M., Feng Y. P., Nano Energy, 2020, 68, 104304 |
[87] | Guo H., Li L., Wang X., Yao G., Yu H., Tian Z., Li B., Chen L., ACS Appl. Mater. Interfaces, 2019, 11, 36506 |
[88] | Yang L., Chen F., Song E., Yuan Z., Xiao B., ChemPhysChem, 2020, 21, 1235 |
[89] | Li L., Li B. H., Guo Q. Y., Li B., J. Phys. Chem. C, 2019, 123, 14501 |
[90] | Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M. W. J. A. M., 2011, 23, 4248 |
[91] | Huang L., Gu X., Zheng G., Chem-US, 2019, 5, 15 |
[92] | Gao Y. J., Zhuo H., Cao Y. Y., Sun X., Zhuang G. L., Deng S. W., Zhong X., Wei Z. Z., Wang J. G., Chinese J. Catal., 2019, 40, 152 |
[93] | Huang B., Li N., Ong W. J., Zhou N. G., J. Mater. Chem. A, 2019, 7, 27620 |
[94] | Gao Y. J., Cao Y. Y., Zhuo H., Sun X., Gu Y. B., Zhuang G. L., Deng S. W., Zhong X., Wei Z. Z., Li X. N., Wang J. G., Catal. Today, 2020, 339, 120 |
[95] | Peng C., Yang X., Li Y., Yu H., Wang H., Peng F., ACS Appl. Mater. Interfaces, 2016, 8, 6051 |
[96] | Azofra L. M., Li N., MacFarlane D. R., Sun C., Energ. Environ. Sci., 2016, 9, 2545 |
[97] | Abghoui Y., Garden A. L., Hlynsson V. F., Bjrgvinsdóttir S., Lafsdóttir H., Skúlason E. Phys. Chem. Chem. Phys, 2015, 17, 4909 |
[98] | Abghoui Y., Skúlasson E., Procedia Computer Science, 2015, 51, 1897 |
[99] | Abghoui Y., Garden A. L., Howalt J. G., Vegge T., Skúlason E., ACS Catal., 2015, 6, 635 |
[100] | Abghoui Y., Skulason E., Catal. Today, 2017, 286, 69 |
[101] | Abghoui Y., Skulason E., J. Phys. Chem. C, 2017, 121, 6141 |
[102] | Shao M., Shao Y., Chen W., Ao K. L., Tong R., Zhu Q., Chan I. N., Ip W. F., Shi X., Pan H., Phys. Chem. Chem. Phys., 2018, 20, 14504 |
[103] | Ying Y. R., Fan K., Luo X., Huang H. T., J. Mater. Chem. A, 2019, 7, 11444 |
[1] | MA Chunrong, SONG Bingyi, MA Zhentao, WANG Xiaoqian, TIAN Lin, ZHANG Haoran, CHEN Cai, ZHENG Xusheng, YANG Li-ming, WU Yuen. A Supported Palladium on Gallium-based Liquid Metal Catalyst for Enhanced Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1219-1225. |
[2] | HAO Zhimin, LIU Dapeng, GE Huaiyun, ZUO Xintao, FENG Xilan, SHAO Mingzhe, YU Haohan, YUAN Guobao, and ZHANG Yu. Preparation of Quaternary FeCoMoCu Metal Oxides for Oxygen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(3): 823-828. |
[3] | FU Xinliang, ZHU Aonan, CHEN Xiaojie, ZHANG Shifu, WANG Mei, YUAN Mingjian. Stabilization of Cu/Ni Alloy Nanoparticles with Graphdiyne Enabling Efficient CO2 Reduction [J]. Chemical Research in Chinese Universities, 2021, 37(6): 1328-1333. |
[4] | WEN Jinguli, LI Yuwen, GAO Junkuo. Two-dimensional Metal-Organic Frameworks and Derivatives for Electrocatalysis [J]. Chemical Research in Chinese Universities, 2020, 36(4): 662-679. |
[5] | SUN Rongbo, GUO Wenxin, HAN Xiao, HONG Xun. Two-dimensional Noble Metal Nanomaterials for Electrocatalysis [J]. Chemical Research in Chinese Universities, 2020, 36(4): 597-610. |
[6] | FANG Wensheng, HUANG Lei, ZAMAN Shahid, WANG Zhitong, HAN Youjia, XIA Bao Yu. Recent Progress on Two-dimensional Electrocatalysis [J]. Chemical Research in Chinese Universities, 2020, 36(4): 611-621. |
[7] | WAN Xi, LI Hao, CHEN Kun, XU Jianbin. Towards Scalable Fabrications and Applications of 2D Layered Material-based Vertical and Lateral Heterostructures [J]. Chemical Research in Chinese Universities, 2020, 36(4): 525-550. |
[8] | LEI Jia, ZENG Mengqi, FU Lei. Two-dimensional Metal-Organic Frameworks as Electrocatalysts for Oxygen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2020, 36(4): 504-510. |
[9] | SHI Yi, DAI Wenrui, WANG Meng, XING Yongfang, XIA Xinghua, CHEN Wei. Bioinspired Construction of Ruthenium-decorated Nitrogen-doped Graphene Aerogel as an Efficient Electrocatalyst for Hydrogen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2020, 36(4): 709-714. |
[10] | YANG Chan, CHAI Jiaxin, WANG Zhe, XING Yonglei, PENG Juan, YAN Qingyu. Recent Progress on Bismuth-based Nanomaterials for Electrocatalytic Carbon Dioxide Reduction [J]. Chemical Research in Chinese Universities, 2020, 36(3): 410-419. |
[11] | LU Xue, LIU Guocheng, WANG Xiang, LIN Hongyan, WANG Xiuli. Carboxylate-induced Various Structures of Ni(Ⅱ) Complexes with Fluorescence Sensing and Bifunctional Electrochemical Properties [J]. Chemical Research in Chinese Universities, 2019, 35(4): 549-555. |
[12] | WANG Jingyang, ZHANG Meng, XU Xiaodong, FENG Jing, WANG Yanli, ZHANG Milin, HAN Wei, CHEN Yitung, TIAN Guoxin. Synthesis and Characterization of [Cu(N-MeIm)4(BF4)2] in Ionic Liquid [J]. Chemical Research in Chinese Universities, 2018, 34(1): 8-12. |
[13] | ZHANG Xuena, ZHONG Xinwen, YANG Zhe, SONG Jiapeng, LU Haiyan. Carbon-covered Tungsten Carbide Nanoparticles: Solid-state Synthesis and Application as Stable Electrocatalysts for the Hydrogen Evolution Reaction [J]. Chemical Research in Chinese Universities, 2016, 32(6): 1016-1018. |
[14] | WANG Ruixin, WANG Hongjing, WANG Xiaogang, LEI Caiping, SHI Xiaohui. Immobilization of Transition-metal Hydroxamates on Polystyrene Resins: Effective Biomimetic Heterogeneous Catalysts for Aerobic Oxidation of Ethylbenzene [J]. Chemical Research in Chinese Universities, 2015, 31(5): 835-840. |
[15] | DUAN Weijie, JIAO Shihui, LIU Xu, CHEN Jinlei, CAO Xuan, CHEN Yan, XU Wei, CUI Xiaobing, XU Jiqing, PANG Guangsheng. Two New Supramolecular Hybrids Based on Bi-capped Keggin {PMo12V2O42} Clusters and Transition Metal Mixed-organic-ligand Complexes [J]. Chemical Research in Chinese Universities, 2015, 31(2): 179-186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||