[1] de Sá M. H., Moreira C. S., Pinto A. M. F. R., Oliveira V. B., Energies, 2022, 15, 17. [2] Mansor M., Timmiati S. N., Lim K. L.,Wong W. Y., Kamarudin S. K., Kamarudin N. H. N., International Journal of Hydrogen Energy, 2019, 44, 14744. [3] Chen F., Sun Y. X., Li H. Y., Li C. J., Energy Technology, 2022, 10, 6. [4] Zhu H., Luo M. C., Wang F. H., Wang Z. M., Han K. F., Abstracts of Papers of the American Chemical Society, 2014, 247, 146. [5] Duan S. B., Du Z., Fan H. S., Wang R. M., Nanomaterials, 2018, 8, 11. [6] Wu Z. P., Hopkinz E., Park K., Yan S., Wang J., Wen J. G., Luo J., Wang L. C., Zhong C. J., Abstracts of Papers of the American Chemical Society, 2018, 256. [7] Joglekar M., Gray T. S., Gunnoe T. B., Trewyn B. G., Abstracts of Papers of the American Chemical Society, 2014, 247, 909. [8] Shi X. Y., Chen S. S., Chempluschem, 2023, 88, 5. [9] Han F., Lu A. H., Li W. C., Progress in Chemistry, 2012, 24, 2443. [10] Zhu Y. Y., Wang Y. H., Wang Y. T., Xu T. J., Chang P., Carbon Energy, 2022, 4, 1182. [11] Tolbin A. Y., Spitsyn B. V., Serdan A. A., Averin A. A., Malakho A. P., Kepman A. V., Sorokina N. E., Avdeev V. V., Inorganic Materials, 2013, 49. [12] Fan Q. Y., Zhao Y. B., Yu X. H., Song Y. X., Zhang W., Yun S. N., Diamond and Related Materials, 2020, 106. [13] Wang H. L., Gao Q. M., Chem. J. Chinese Universities, 2011, 32, 462. [14] Borchardt L., Oschatz M., Kaskel S., Materials Horizons, 2014, 1, 157. [15] Li D. G., Gong Y. L., Li G., Lyu X., Dai Z. Q., Wang Q., New Journal of Chemistry, 2021, 45, 13088. [16] Shih K. Y., Wei J. J., Tsai M. C., Nanomaterials, 2021, 11, 9. [17] Chen Y. J., Ji S. F., Chen C., Peng Q., Wang D. S., Li Y. D., Joule, 2018, 2, 1242. [18] Chang Y. N., Yang J. Y., Zhang M., Yue M., Wang W., Li J. W., Wang J. D., Song K. F., Liu Y., Zuo Y. X., Xing R., Journal of Alloys and Compounds, 2024, 1005. [19] Liang C. X., Wang M., Liu W., Liu H. Y., Huang D. W., Zhang Y. Z., Zhang K. H., Jiang L. S., Jia Y. Y., Niu C. G., Chemical Engineering Journal, 2023, 466. [20] Chen W. M., Luo M., Yang K., Zhang D. T., Zhou X. Y., Journal of Cleaner Production, 2021, 282. [21] Guy F., Runtti H., Duclaux L., Ondarts M., Reinert L., Outin J., Gonze E., Bonnamy S., Soneda Y., Microporous and Mesoporous Materials, 2021, 322. [22] Joseph S. R., Sebastian L., Mythili U., Biomass Conversion and Biorefinery, 2023, 10, 1007. [23] Palomero-Gallagher N., Bidmon H. J., Cremer M., Schleicher A., Kircheis G., Reifenberger G., Kostopoulos G., Häussinger D., Zilles K., Cellular Physiology and Biochemistry, 2009, 24, 291. [24] Pavlets A. S., Alekseenko A. A., Nikolskiy A. V., Kozakov A. T., Safronenko O. I., Pankov I. V., Guterman V. E., International Journal of Hydrogen Energy, 2022, 47, 30460. [25] Lin R. H., Fang L., Li X. P., Zhang S. F., Polymer-Plastics Technology and Engineering, 2006, 45, 1243. [26] Ren Q. G., Xue Y. H., Cui Z. J., Lu Y. H., Li W. M., Zhang W. J., Ye T., Diamond and Related Materials, 2022, 125, 25. [27] Wei J. J., Ge L., Wang W. L., Hong P. D., Li Y. L., Li Y. H., Xie C., Wu Z. J., He J. Y., Kong L. T., Journal of Environmental Chemical Engineering, 2024, 12, 2. [28] Shimbori YY., Shiroishi H., Ono R., Kosaka S., Saito M., Yoshida T., Katagiri H., Miyazawa K., Tanaka Y., Materials Science and Engineering B: Advanced Functional Solid-State Materials, 2018, 228, 190. [29] Zhou P., Erning J. W., Ogle K., Electrochimica Acta, 2019, 293, 290. [30] Wei Z., Zhao H. X., Niu Y. B., Zhang S. Y., Wu Y. B., Yan H. J., Xin S., Yin Y. X., GuoY. G., Materials Chemistry Frontiers, 2021, 5, 3911. [31] Yi L. H., Liu L., Liu X., Wang X. Y., Yi W., He P. Y., Wang X. Y., International Journal of Hydrogen Energy, 2012, 37, 12650. [32] Belenov S. V., Guterman V. E., Tabachkova N. Y., Moguchikh E. A., Alekseenko A. A., Russian Journal of Electrochemistry, 2018, 54, 1209. [33] Liu D., Cui W., Yao M. G., Li Q. J., Cui T., Liu B. B., Liu D. P., Sundqvist B., Optical Materials, 2013, 36, 449. [34] Yoshio M., Nakamura H., Wang H. Y., Electrochemical and Solid State Letters, 2006, 9, 12. [35] Sankar S., Ahmed A. T. A., Inamdar A. I., Im H., Im Y. Bin, Lee Y., Kim D. Y., Lee S., Materials & Design, 2019, 169, 107688. [36] Wu MM. X., Wu X., Zhang L., Abdelhafiz A., Chang I., Qu C., Jiang Y. C., Zeng J. H., Alamgir F., Electrochimica Acta, 2019, 306, 167. [37] Tate G. L., Mehrabadi B. A. T., Xiong W., Kenvin A., Monnier J. R., Nanomaterials, 2021, 11, 793. [38] Mintsouli I., Georgieva J., Armyanov S., Valova E., Avdeev G., Hubin A., Steenhaut O., Dille J., Tsiplakides D., Balomenou S., Sotiropoulos S., Applied Catalysis B: Environmental, 2013, 136, 160. [39] Biesinger M. C., Surface and Interface Analysis, 2017, 49, 1325. [40] Wang C., Kuai L., Cao W., Singh H., Zakharov A., Niu Y. R., Sun H. X., Geng B. Y., Chemical Engineering Journal, 2021, 426. [41] Douk A. S., Saravani H., American Chemical Society, 2023, 8, 45245. [42] Oezaslan M., Hasche F., Strasser P., Journal of The Electrochemical Society, 2012, 159, 4. [43] Shen S., Xu S., Zhao S., ACS Sustainable Chemistry and Engineering, 2022, 10, 2. [44] You H., Zhang F., Liu Z., ACS Catalysis, 2014, 4, 9. [45] Moulijn J. A., Van Diepen A. E., Kapteijn F., Applied Catalysis A: General, 2001, 212, 1. [46] Nassr A. B. A. A., Sinev I., Grünert W., Applied Catalysis B: Environmental, 2013, 142, 849. |