Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3): 320-328.doi: 10.1007/s40242-020-0111-5
• Reviews • Previous Articles Next Articles
ZHU Mengzhao, WANG Jing, WU Yuen
Received:
2020-04-15
Revised:
2020-05-09
Online:
2020-06-01
Published:
2020-05-11
Contact:
WU Yuen
E-mail:yuenwu@ustc.edu.cn
Supported by:
ZHU Mengzhao, WANG Jing, WU Yuen. Single-atom Catalysts for Polymer Electrolyte Membrane Fuel Cells[J]. Chemical Research in Chinese Universities, 2020, 36(3): 320-328.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Debe M. K., Nature, 2012, 486, 43 |
[2] | Shao M. H., Chang Q. W., Dodelet J. P., Chenitz R., Chemical Reviews, 2016, 116, 3594 |
[3] | Roger I., Shipman M. A., Symes M. D., Nature Reviews Chemistry, 2017, 1, 0003 |
[4] | Morozan A., Jousselme B., Palacin S., Energy & Environmental Science, 2011, 4, 1238 |
[5] | Jaouen F., Proietti E., Lefevre M., Chenitz R., Zelenay P., Energy & Environmental Science, 2010, 4, 114 |
[6] | Bayatsarmadi B., Zheng Y., Vasileff A., Qiao S.-Z., Small, 2017, 1700191 |
[7] | Wu G., More K. L., Johnston C. M., Zelenay P., Science, 2011, 332, 443 |
[8] | Liu J., Jiao M. G., Lu L. L., Barkholtz H. M., Li Y. P., Wang Y., Jiang L. H., Wu Z. J., Liu D.-J., Zhuang L., Nature Communications, 2017, 8, 15938 |
[9] | Zitolo A., Goellner V., Armel V., Sougrati M. T., Mineva T., Stievano L., Fonda E., Jaouen F., Nature Materials, 2015, 14, 937 |
[10] | Thompson S. T., Wilson A. R., Zelenay P., Myers D. J., More K. L., Neyerlin K. C., Papageorgopoulos D., Solid State Ionics, 2018, 319, 68 |
[11] | Wu G., Zelenay P., Accounts of Chemical Research, 2013, 46, 1878 |
[12] | Banham D., Ye S. Y., ACS Energy Letters, 2017, 2, 629 |
[13] | Wipke K., Sprik S., Kurtz J., Ramsden T., Ainscough C., Saur G., http://www.hydrogen.energy.gov/pdfs/review11/tv001_wipke_2011_o.pdf |
[14] | Chung D. Y., Yoo J. M., Sung Y. E., Advanced Materials, 2018, 1704123 |
[15] | Wang X. Q., Li Z. J., Qu Y. T., Yuan T. W., Wang W. Y., Wu Y. E., Li Y. D., Chem., 2019, 5, 1486 |
[16] | Perez-Alonso F. J., Mccarthy D. N., Nierhoff A., Hernandez-Fernandez P., Strebel C., Stephens I. E. L., Nielsen J. H., Chorkendorff I., Angewandte Chemie International Edition, 2012, 124, 4719 |
[17] | Yang X. F., Wang A. Q., Qiao B. T., Li J., Liu J. Y., Zhang T., Accounts of Chemical Research, 2013, 46, 1740 |
[18] | Long B., Tang Y., Li J., Nano Research, 2016, 9, 3868 |
[19] | Zhu C. Z., Fu S. F., Shi Q. R., Du D., Lin Y. H., Angewandte Chemie International Edition, 2017, 56, 13944 |
[20] | Chen Y. J., Ji S. F., Chen C., Peng Q., Wang D. S., Li Y. D., Joule, 2018, 2, 1242 |
[21] | Guo J. J., Juan H. J., Liu Y., Wu W. J., Xiu W. G., Small Methods, 2019, 3, 1900159 |
[22] | Sun T. T., Xu L. B., Wang D. S., Li Y. D., Nano Research, 2019, 12, 2067 |
[23] | Zhao C., Yu H. Z., Wang J., Che W., Li Z. J., Yao T., Yan W. S., Chen M., Yang J., Wei S. Q., Materials Chemistry Frontiers, 2018, 2, 1317 |
[24] | Wang Z. M., Gu L., Song L., Wang H., Yu R., Materials Chemistry Frontiers, 2018, 2, 1024 |
[25] | Han B. X., Chem. Res. Chinese Universities, 2019, 35(1), 6 |
[26] | Zhu C. Z., Shi Q. R., Xu B. Z., Fu S. F., Lin Y. H., Advanced Energy Materials, 2018, 8, 1801956 |
[27] | Zheng Y., Jiao Y., Zhu Y. H., Cai Q. R., Vasileff A., Li L. H., Han Y., Chen Y., Qiao S.-Z., Journal of the American Chemical Society, 2017, 139, 3336 |
[28] | Fei H. L., Dong J. C., Arellano-Jiménez M. J., Ye G. L., Kim N. D., Samuel E. L. G., Peng Z. W., Zhu Z., Qin F., Bao J. M., Nature Communications, 2015, 6, 8668 |
[29] | Yang H. Z., Wang X., Advanced Materials, 2018, 1800743 |
[30] | Liang Z. B., Qu C., Xia D. G., Zou R. Q., Xu Q., Angewandte Chemie, 2018, 57, 9604 |
[31] | Wang P. T., Shao Q., Huang X. Q., Joule, 2018, 2, 2514 |
[32] | Liu J., Jiao M. G., Mei B. B., Tong Y. X., Li Y. P., Ruan M. B., Song P., Sun G. Q., Jiang L. H., Wang Y., Angewandte Chemie International Edition, 2019, 131, 1175 |
[33] | Xiao M. L., Zhu J. B., Li G. R., Li N., Li S., Cano Z. P., Ma L., Cui P. X., Pan X., Jiang G. P., Angewandte Chemie International Edition, 2019, 58, 1163 |
[34] | Shui J. L., Wang M., Du F., Dai L. M., Science Advances, 2015, 1, 1400129 |
[35] | Gu W. L., Hu L. Y., Li J., Wang E. K., Electroanalysis, 2018, 30, 1217 |
[36] | Peng H. L., Liu F. F., Liu X. J., Liao S. J., You C. H., Tian X. L., Nan H. X., Luo F., Song H. Y., Fu Z. Y., ACS Catalysis, 2014, 4, 3797 |
[37] | Masa J., Zhao A. Q., Wei X., Muhler M., Schuhmann W., Electrochimica Acta, 2014, 128, 271 |
[38] | Zhang H. G., Hwang S., Wang M. Y., Feng Z. X., Karakalos S., Luo L. L., Qiao Z., Xie X. H., Wang C. M., Su D., Journal of the American Chemical Society, 2017, 139, 14143 |
[39] | Ren H., Wang Y., Yang Y., Tang X., Peng Y. Q. X., Li, Lu J. T., Abruña H. D., Lin Z., ACS Catalysis, 2017, 7, 6485 |
[40] | Liu Y., Cheng D. J., Xu H. X., Zeng X. F., Wan X., Shui J. L., Xiang Z. H., Cao D. P., Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6626 |
[41] | Liu Q. T., Liu X. F., Zheng L. R., Shui J. L., Angewandte Chemie International Edition, 2018, 57, 1204 |
[42] | Wan X., Liu X. F., Li Y. C., Yu R. H., Zheng L. R., Yan W. S., Wang H., Xu M., Shui J. L., Nature Catalysis, 2019, 2, 259 |
[43] | Kramm U. I., Lefèvre M., Larouche N., Schmeisser D., Dodelet J. P., Journal of the American Chemical Society, 2014, 136, 978 |
[44] | Chung H. T., Cullen D. A., Higgins D., Sneed B. T., Holby E. F., More K. L., Zelenay P., Science, 2017, 357, 479 |
[45] | Proietti E., Jaouen F., Lefèvre M., Larouche N., Tian J., Herranz J., Dodelet J. P., Nature Communications, 2011, 2, 416 |
[46] | Shui J. L., Chen C., Grabstanowicz L., Zhao D., Liu D.-J., Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10629 |
[47] | Wang Y. C., Lai Y. J., Song L., Zhou Z. Y., Liu J. G., Wang Q., Yang X. D., Chen C., Shi W., Zheng Y. P., Angewandte Chemie International Edition, 2015, 54, 9907 |
[48] | Fu X. G., Zamani P., Choi J. Y., Hassan F. M., Chen Z. W., Advanced Materials, 2016, 29, 1604456 |
[49] | Walling C., Accounts of Chemical Research, 1975, 8, 125 |
[50] | Kang S. F., Chang H. M., Water Science & Technology, 1997, 36, 215 |
[51] | Wang X. X., Cullen D. A., Pan Y. T., Hwang S., Wang M. Y., Feng Z. X., Wang J. Y., Engelhard M. H., Zhang H. G., He Y. H., Shao Y. Y., Su D., More K. L., Wu G., Advanced Materials, 2018, 30, 1706758 |
[52] | Xiang Z. H., Xue Y. H., Cao D. P., Huang L., Chen J.-F., Dai L. M., Angew Chem. Int. Ed. Engl., 2014, 126, 2465 |
[53] | Su J. W., Ge R. X., Dong Y., Hao F., Chen L., Journal of Materials Chemistry A, 2018, 6, 14025 |
[54] | He Y. H., Hwang S., Cullen D. A., Uddin M. A., Langhorst L., Li B. Y., Karakalos S., Kropf A. J., Wegener E. C., Sokolowski J., Chen M. J., Myers D., Su D., More K. L., Wang G. F., Litster S., Wu G., Energy & Environmental Science, 2019, 12, 250 |
[55] | Li J. Z., Chen M. J., Cullen D. A., Hwang S., Wang M. Y., Li B. Y., Liu K. X., Karakalos S., Lucero M., Zhang H. G., Lei C., Xu H., Sterbinsky G. E., Feng Z. X., Su. D., More K. L., Wang G. F., Wang Z. B., Wu G., Nature Catalysis, 2018, 1, 935 |
[56] | Wang X. L., Li Q., Pan H. Y., Lin Y., Ke Y. J., Sheng H. Y., Swihart M. T., Wu G., Nanoscale, 2015, 7, 20290 |
[57] | Gupta S., Zhao S., Wang X. X., Hwang S., Karakalos S., Devaguptapu S., Mukherjee S., Su D., Xu H., Wu G., ACS Catalysis, 2017, 7, 83836 |
[58] | Chao T. T., Luo X., Chen W. X., Jiang B., Ge J. J., Lin Y., Wu G., Wang X. Q., Hu Y. M., Zhuang Z. B., Wu Y. E., Hong X., Li Y. D., Angewandte Chemie, 2017, 56, 16047 |
[59] | Wei L., Karahan H. E., Zhai S. L., Liu H. W., Chen X. C., Zhou Z., Lei Y. J., Liu Z. W., Chen Y., Advanced Materials, 2017, 29, 1701410 |
[60] | Duan J. J., Chen S., Zhao C., Nature Communications, 2017, 8, 15341 |
[61] | Zhao S. L., Wang Y., Dong J. C., He C.-T., Yin H. J., An P. F., Zhao K., Zhang X. F., Gao C., Zhang L. J., Lv J. W., Wang J. X., Zhang J. Q., Khattak A. M., Khan N. A., Wei Z. X., Zhang J., Liu S. Q., Zhao H. J., Tang Z. Y., Nature Energy, 2016, 1, 16184 |
[62] | Wang J., Huang Z. Q., Liu W., Chang C. R., Tang H. L., Li Z. J., Chen W. X., Jia C. J., Yao T., Wei S. Q., Wu Y. E., Li Y. D., Journal of the American Chemical Society, 2017, 139, 17281 |
[63] | Tian J., Morozan A., Sougrati M. T., Lefèvre M., Chenitz R., Dodelet J. P., Jones D., Jaouen F., Angewandte Chemie International Edition, 2013, 52, 6867 |
[64] | Shen H. J., Thomas T., Rasaki S. A., Saad A., Hu C., Wang J. C., Yang M. H., Electrochemical Energy Reviews, 2019, 2, 252 |
[65] | Chong L. N., Wen J. G., Kubal J., Sen F. G., Zou J. X., Greeley J., Chan M., Barkholtz H., Ding W. J., Liu D.-J., Science, 2018, 362, 1276 |
[1] | LIU Zailun, SUN Like, ZHANG Qitao, TENG Zhenyuan, SUN Hongli, SU Chenliang. TiO2-supported Single-atom Catalysts: Synthesis, Structure, and Application [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1123-1138. |
[2] | WU Fan, LIU Pengxin. Surface Organometallic Chemistry for Single-site Catalysis and Single-atom Catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1139-1145. |
[3] | WANG Guowei, KE Xiaoxing, SUI Manling. Advanced TEM Characterization for Single-atom Catalysts: from Ex-situ Towards In-situ [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1172-1184. |
[4] | FAN Kui, SUN Yining, XU Pengcheng, GUO Jian, LI Zhenhua, SHAO Mingfei. Single-atom Catalysts Based on Layered Double Hydroxides [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1185-1196. |
[5] | MIAO Tianchang, DI Xin, HAO Feini, ZHENG Gengfeng, HAN Qing. Polymeric Carbon Nitride-based Single Atom Photocatalysts for CO2 Reduction to C1 Products [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1197-1206. |
[6] | TENG Zhenyuan, YANG Hongbin, ZHANG Qitao, OHNO Teruhisa. Carrier Dynamics and Surface Reaction Boosted by Polymer-based Single-atom Photocatalysts [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1207-1218. |
[7] | LI Yang, WANG Xian, LIU Jie, JIN Zhao, LIU Changpeng, GE Junjie, XING Wei. Anode Catalytic Dependency Behavior on Ionomer Content in Direct CO Polymer Electrolyte Membrane Fuel Cell [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1251-1257. |
[8] | ZHENG Meng, WANG Jin. Regulating the Oxygen Affinity of Single Atom Catalysts by Dual-atom Design for Enhanced Oxygen Reduction Reaction Activity [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1275-1281. |
[9] | SONG Weiyu, LV Xintong, GAO Yang, WANG Lu. Photocatalytic HER Performance of TiO2-supported Single Atom Catalyst Based on Electronic Regulation:A DFT Study [J]. Chemical Research in Chinese Universities, 2022, 38(4): 1025-1031. |
[10] | WANG Zelin, LIU Guihao, SHEN Tianyang, TAN Ling, ZHAO Yufei, SONG Yu-Fei. Remote Synthesis of Layered Double Hydroxide Nanosheets Through the Automatic Chemical Robot [J]. Chemical Research in Chinese Universities, 2022, 38(1): 217-222. |
[11] | WANG Yuqing, TAO Li, CHEN Ru, LI Hao, SU Hui, ZHANG Nana, LIU Qinghua, WANG Shuangyin. Atomically Dispersed Fe on Nanosheet-linked, Defect-rich, Highly N-Doped 3D Porous Carbon for Efficient Oxygen Reduction [J]. Chemical Research in Chinese Universities, 2020, 36(3): 453-458. |
[12] | ZHAO Dongjiang, MA Songyan. Oxygen Electroreduction on CoSe2 Nanoparticles Prepared via Hydrothermal Method in Acidic Medium [J]. Chemical Research in Chinese Universities, 2015, 31(3): 447-451. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||