Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (1): 61-71.doi: 10.1007/s40242-023-2336-6

• Review • Previous Articles     Next Articles

Biomimetic Construction of the Enamel-like Hierarchical Structure

SONG Haoyue1, LIU Zhuanfei1, ZOU Zhaoyong1,2   

  1. 1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China;
    2. Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572000, P. R. China
  • Received:2022-12-10 Online:2023-02-01 Published:2023-02-02
  • Contact: ZOU Zhaoyong E-mail:zzou@whut.edu.cn
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (No.52172287).

Abstract: Enamel, the hardest mineralized tissue of vertebrates, exhibits simultaneously high stiffness, hardness, and viscoelasticity. The excellent mechanical properties of enamel originate from its high inorganic content and intricate hierarchical structure. Biomimetic construction of the enamel-like hierarchical structure has attracted widespread interest during the past decades. This review summarizes recent advances in this area with a special focus on fabrication techniques across different levels of hierarchy. This includes the synthesis of apatite nanorods or nanowires, the basic building block of enamel, the fabrication of oriented apatite nanorod arrays and the construction of the enamel-like multi-level hierarchical structure. Moreover, possible directions of future research and development in this field are proposed.

Key words: Biomimetic, Enamel, Hierarchical Structure, Apatite