Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5): 870-876.doi: 10.1007/s40242-020-0169-0
• Articles • Previous Articles Next Articles
ZHOU Rui, LI Tingting, ZHANG Lijian, JIAO Xinqian
Received:
2020-06-05
Revised:
2020-07-06
Online:
2020-10-01
Published:
2020-10-01
Contact:
JIAO Xinqian
E-mail:jiaoxq@jlu.edu.cn
Supported by:
ZHOU Rui, LI Tingting, ZHANG Lijian, JIAO Xinqian. Reduction Removal of Cr(VI) from Wastewater by CO2·- Deriving from Formate Anion Based on Activated Carbon Catalyzed Persulfate[J]. Chemical Research in Chinese Universities, 2020, 36(5): 870-876.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Kobya M., Bioresour Technol., 2004, 91(3), 317 |
[2] | du Preez S. P., Beukes J. P., van Zyl P. G., Metallurgical and Materials Transactions B, 2014, 46(2), 1002 |
[3] | Nakajima A., Baba Y., Water Res., 2004, 38(12), 2859 |
[4] | Zhang Y. J., Ou J. L., Duan Z. K., Xing Z. J., Wang Y., Colloids & Surfaces A:Physicochemical & Engineering Aspects, 2015, 481, 108 |
[5] | Fang Z., Qiu X., Huang R., Qiu X., Li M., Desalination, 2011, 280(1), 224 |
[6] | Bansal M., Singh D., Garg V. K., J. Hazard Mater., 2009, 171(1), 83 |
[7] | Wang N., Zhu L., Deng K., She Y., Yu Y., Tang H., Applied Catalysis B:Environmental, 2010, 95(3/4), 400 |
[8] | Daulton T. L., Little B. J., Jones-Meehan J., Blom D. A., Allard L. F., Geochim Cosmochim Acta, 2007, 71(3), 556 |
[9] | Thomson R. C., Miller M. K., Acta Mater., 1998, 46(6), 2203 |
[10] | Zongo I., Leclerc J.-P., Maiga H. A., Wethe J., Lapicque F., Sep. Purif Technol., 2009, 66(1), 159 |
[11] | Tosco T., Papini M. P., Viggi C. C., Sethi R., Journal of Cleaner Production, 2014, 77, 10 |
[12] | Oh W.-D., Dong Z., Lim T.-T., Applied Catalysis B:Environmental, 2016, 194, 169 |
[13] | Rosso J. A., Bertolotti S. G., Braun A. M., Martire D. O., Gonzalez M. C., J. Phys. Org. Chem., 2001, 14(5), 300 |
[14] | Tachikawa T., Tojo S., Fujitsuka M., Majima T., Langmuir, 2004, 20(22), 9441 |
[15] | Schutz O., Meyerstein D., Tetrahedron Lett., 2006, 47(7), 1093 |
[16] | Mora V. C., Rossoa J. A., Carrillo Le Roux G., Martire D. O., Gonzalez M. C., Chemosphere, 2009, 75(10), 1405 |
[17] | Wu W., Liu G., Liang S., Chen Y., Shen L., Zheng H., Yuan R., Hou Y., Wu L., J. Catal., 2012, 290, 13 |
[18] | Berkovic A. M., Bertolotti S. G., Villata L. S., Gonzalez M. C., Pis Diez R., Martire D. O., Chemosphere, 2012, 89(10), 1189 |
[19] | Berkovic A. M., Gonzalez M. C., Russo N., Michelini M. D. C., Pis Diez R., Martire D. O., J. Phys. Chem. A, 2010, 114(49), 12845 |
[20] | Ren H., Hou Z., Han X., Zhou R., Chem. Eng. J., 2017, 309, 638 |
[21] | Harbour J. R., Hair M. L., Canadian Journal of Chemistry, 1979, 57(10), 1150 |
[22] | Wang J., Wang S., Chem. Eng. J., 2018, 334, 1502 |
[23] | Wang G., Chen S., Quan X., Yu H., Zhang Y., Carbon, 2017, 115, 730 |
[24] | Kordkandi S. A., Forouzesh M., Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(5), 2597 |
[25] | Li J., Lin H., Zhu K., Zhang H., Chemosphere, 2017, 188, 139 |
[26] | Vega E., Valdes H., Microporous Mesoporous Mater., 2018, 259, 1 |
[27] | Lee Y. C., Lo S. L., Kuo J., Huang C. P., J. Hazard Mater., 2013, 261, 463 |
[28] | Yang S., Yang X., Shao X., Niu R., Wang L., J. Hazard Mater., 2011, 186(1), 659 |
[29] | Forouzesh M., Ebadi A., Aghaeinejad-Meybodi A., Sep. Purif Technol., 2019, 210, 145 |
[30] | Fierro V., Torne-Fernandez V., Celzard A., Montane D., J. Hazard Mater., 2007, 149(1), 126 |
[31] | Liang C., Lin Y. T., Shih W. H., Ind. Eng. Chem. Res., 2009, 48(18), 8373 |
[32] | Diao Z. H., Xu X. R., Jiang D., Kong L. J., Sun Y. X., Hu Y. X., Hao Q. W., Chen H., Chem. Eng. J., 2016, 302, 213 |
[33] | Wang N., Zhu L., Deng K., She Y., Yu Y., Tang H., Applied Catalysis B:Environmental, 2010, 95(3/4), 400 |
[34] | Liang C., Huang C. F., Mohanty N., Kurakalva R. M., Chemosphere, 2008, 73(9), 1540 |
[35] | Sun Y., Yue Q., Mao Y., Gao B., Yuan G., Huang L., J. Hazard Mater., 2014, 265(2), 191 |
[36] | Cheng S., Zhang L., Ma A., Xia H., Peng J., Li C., Shu J., J. Environ. Sci., 2018, 65, 92 |
[37] | Xu M., Gu X., Lu S., Qiu Z., Sui Q. J. I., Ind. Eng. Chem. Res., 2014, 53(3), 1056 |
[38] | Guedidi H., Reinert L., Lévêque J. M., Soneda Y., Duclaux L. J. C., Carbon, 2013, 54, 432 |
[39] | Liu W., Zhang J., Zhang C., Ren L., Chem. Eng. J., 2012, 189, 295 |
[40] | Gupta V. K., Shrivastava A. K., Jain N., Water. Res., 2001, 35(17), 4079 |
[41] | Reymond J. P., Kolenda F., Powder Technol., 1999, 103(1), 30 |
[42] | Mohan D., Pittman C. U. Jr., J. Hazard Mater., 2006, 137(2), 762 |
[43] | Powell R. M., Blowes D. W., Gillham R. W., Schultz D., Sivavec T., Puls R. W., Vogan J. L., Powell P. D., Landis R., Office of Research and Development, Office of Solid Waste and Emergency Response, USEPA, EPA/600/R-98/125, 1998 |
[44] | Santos A., Fernandez J., Rodriguez S., Dominguez C. M., Lominchar M. A., Lorenzo D., Romero A., Sci. Total. Environ., 2018, 615, 1070 |
[45] | Yang J. F., Yang L. M., Zhang S. B., Ou L. H., Liu C. B., Zheng L. Y., Yang Y. F., Ying G. G., Luo S. L., Chem. Eng. J., 2017, 321, 113 |
[46] | Danis U., Environ. Prog. Sustain Energy, 2011, 30(2), 177 |
[47] | Vega F. A., Covelo F. E., Spanish Journal of Soil Science, 2011, 1(1), 20 |
[48] | Lei Y., Chen C. S., Tu Y. J., Huang Y. H., Zhang H., Environ. Sci. Technol., 2015, 49(11), 6838 |
[49] | Liu H., Bruton T. A., Doyle F. M., Sedlak D. L., Environ. Sci. Technol., 2014, 48(17), 10330 |
[50] | Villamena F. A., Locigno E. J., Rockenbauer A., Hadad C. M., Zweier J. L., J. Phys. Chem. A, 2006, 110(49), 13253 |
[51] | Zamora P. L., Villamena F. A., J. Phys. Chem. A, 2012, 116(26), 7210 |
[52] | Das S., Mishra J., Das S. K., Pandey S., Rao D. S., Chakraborty A., Sudarshan M., Das N., Thatoi H., Chemosphere, 2014, 96, 112 |
[1] | XU Guangyuan, LIU Qin, YAN Huan. Recent Advances of Single-atom Catalysts for Electro-catalysis [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1146-1150. |
[2] | BU Ran, LU Yingying, ZHANG Bing. Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1151-1162. |
[3] | MIAO Tianchang, DI Xin, HAO Feini, ZHENG Gengfeng, HAN Qing. Polymeric Carbon Nitride-based Single Atom Photocatalysts for CO2 Reduction to C1 Products [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1197-1206. |
[4] | MA Chunrong, SONG Bingyi, MA Zhentao, WANG Xiaoqian, TIAN Lin, ZHANG Haoran, CHEN Cai, ZHENG Xusheng, YANG Li-ming, WU Yuen. A Supported Palladium on Gallium-based Liquid Metal Catalyst for Enhanced Oxygen Reduction Reaction [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1219-1225. |
[5] | QIAN Shengjie, WANG Yanggang, LI Jun. Single Iron-dimer Catalysts on MoS2 Nanosheet for Potential Nitrogen Activation [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1226-1231. |
[6] | SHU Chengyong, GAN Zhuofan, ZHOU Jia, WANG Zhen, TANG Wei. Highly Efficient Oxygen Reduction Reaction Fe-N-C Cathode in Long-durable Direct Glycol Fuel Cells [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1268-1274. |
[7] | ZHENG Meng, WANG Jin. Regulating the Oxygen Affinity of Single Atom Catalysts by Dual-atom Design for Enhanced Oxygen Reduction Reaction Activity [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1275-1281. |
[8] | GONG Yu, PAN Jing, ZHANG Lingling, WANG Xiao, SONG Shuyan, ZHANG Hongjie. Metal-Organic Frameworks-derived Indium Clusters/Carbon Nanocomposites for Efficient CO2 Electroreduction [J]. Chemical Research in Chinese Universities, 2022, 38(5): 1287-1291. |
[9] | CHEN Yu, CHEN Yongting, LIAO Yuxiang, CHEN Shengli. A Chemical Dealloying Approach for Pt Surface-enriched Pt3Co Alloy Nanoparticles as Oxygen Reduction Reaction Electrocatalysts [J]. Chemical Research in Chinese Universities, 2022, 38(4): 991-998. |
[10] | ZHENG Ruonan, ZHAI Zihui, QIU Chenxi, GAO Rui, LV Yang, SONG Yujiang. Highly Active Electrocatalyst Derived from ZIF-8 Decorated with Iron(III) and Cobalt(III) Porphyrin Toward Efficient Oxygen Reduction in Both Alkaline and Acidic Media [J]. Chemical Research in Chinese Universities, 2022, 38(4): 961-967. |
[11] | JI Yuancheng, XU Jiayun, SUN Hongcheng, and LIU Junqiu. Artificial Photosynthesis(AP): from Molecular Catalysts to Heterogeneous Materials [J]. Chemical Research in Chinese Universities, 2022, 38(3): 688-697. |
[12] | CHANG Shunkai, LI Cuiyan, LI Hui, ZHU Liangkui, FANG Qianrong. Stable Thiophene-sulfur Covalent Organic Frameworks for Oxygen Reduction Reaction(ORR) [J]. Chemical Research in Chinese Universities, 2022, 38(2): 396-401. |
[13] | ZHANG Yin, MA Shengqian. Laser-induced Synthesis of Ultrafine Gold Nanoparticles in Covalent Organic Frameworks [J]. Chemical Research in Chinese Universities, 2022, 38(2): 468-471. |
[14] | YU Xiaoming, MA Yunchao, LI Cuiyan, GUAN Xinyu, FANG Qianrong, QIU Shilun. A Nitrogen, Sulfur co-Doped Porphyrin-based Covalent Organic Framework as an Efficient Catalyst for Oxygen Reduction [J]. Chemical Research in Chinese Universities, 2022, 38(1): 167-172. |
[15] | YI Jundong, LI Qiuxia, CHI Shaoyi, HUANG Yuanbiao, CAO Rong. Boron-doped Covalent Triazine Framework for Efficient CO2 Electroreduction [J]. Chemical Research in Chinese Universities, 2022, 38(1): 141-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||