Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4): 680-684.doi: 10.1007/s40242-020-0184-1
• Letter • Previous Articles Next Articles
LIU Shengtang, YANG Miao, LIU Cheng, TIAN Bailin, DING Mengning
Received:
2020-06-14
Revised:
2020-07-15
Online:
2020-08-01
Published:
2020-07-30
Contact:
DING Mengning
E-mail:mding@nju.edu.cn
Supported by:
LIU Shengtang, YANG Miao, LIU Cheng, TIAN Bailin, DING Mengning. Superlattice Structure from Re-stacked NiFe Layer Double Hydroxides for Oxygen Evolution Reaction[J]. Chemical Research in Chinese Universities, 2020, 36(4): 680-684.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Wang Q., O'Hare D., Chem. Rev.,2012, 112, 4124 |
[2] | Xu M., Wei M., Adv. Funct. Mater.,2018, 28, 1802943 |
[3] | Fan G., Li F., Evans D. G., Duan X., Chem. Soc. Rev.,2014, 43, 7040 |
[4] | Tokudome Y., Morimoto T., Tarutani N., Vaz P. D., Nunes C. D., Prevot V., Stenning G. B. G., Takahashi M., ACS Nano,2016, 10, 5550 |
[5] | Meyn M., Beneke K., Lagaly G., Inorg. Chem.,1990, 29(26), 5201 |
[6] | Gursky J. A., Blough S. D., Luna C., Gomez C., Luevano A. N., Gardner E. A., J. Am. Chem. Soc.,2006, 128(26), 8376 |
[7] | Ge X., Gu C., Yin Z., Wang X., Tu J., Li J., Nano Energy,2016, 20, 185 |
[8] | Zhao M. Q., Zhang Q., Huang J. Q., Wei F., Adv. Funct. Mater.,2012, 22, 675 |
[9] | Kang H., Huang G., Ma S., Bai Y., Ma H., Li Y., Yang X., J. Phys. Chem. C,2009, 113, 9157 |
[10] | Liang D., Peng X., Li Y., Wang H., Yang X., Adv. Mater. Interfaces,2017, 4, 1700740 |
[11] | Maki H., Inoue M., Mizuhata M. J. E. T., ECS Transactions, 2017, 75, 11 |
[12] | Gunawan P., Xu R., J. Pharm. Sci.,2008, 97, 4367 |
[13] | Zhang K., Xu Z. P., Lu J., Tang Z. Y., Zhao H. J., Good D. A., Wei M. Q., Inter. J. Molec. Sci.,2014, 15, 7409 |
[14] | Zhang J., Hu H., Li Z., Lou X. W., Angew. Chem. Int. Ed.,2016, 55, 3982 |
[15] | Vialat P., Mousty C., Taviot-Gueho C., Renaudin G., Martinez H. Dupin J. C., Elkaim E., Leroux F. J. A. F. M., Adv. Funct. Mater., 2014, 24, 4831 |
[16] | Dionigi F., Zeng Z., Sinev I., Merzdorf T., Deshpande S., Lopez M. B., Kunze S., Zegkinoglou I., Sarodnik H., Fan D., Bergmann A., Drnec J., Araujo J. F. D., Gliech M., Teschner D., Zhu J., Li W. X., Greeley J., Cuenya B. R., Strasser P., Nature Commun.,2020, 11, 2522 |
[17] | Toops T. J., Crocker M., Applied Catalysis B:Environmental,2008, 82, 199 |
[18] | Fahel J., Kim S., Durand P., Andre E., Carteret C., Dalton Trans.,2016, 45, 8224 |
[19] | Ma W., Ma R., Wang C., Liang J., Liu X., Zhou K., Sasaki T., ACS Nano,2015, 9, 1977 |
[20] | Xiong P., Zhang X., Wan H., Wang S., Zhao Y., Zhang J., Zhou D., Gao W., Ma R., Sasaki T., Wang G., Nano Lett.,2019, 19, 4518 |
[21] | Islam M. S., Kim M., Jin X., Oh S. M., Lee N. S., Kim H., Hwang S. J., ACS Energy Lett.,2018, 3, 952 |
[22] | Wang X., Li H., Li H., Lin S., Bai J., Dai J., Liang C., Zhu X., Sun Y., Dou S., J. Mater. Chem. A,2019, 7, 2291 |
[23] | Wu X., Huang B., Wang Q., Wang Y., Chem. Engineering J.,2020, 380, 122456 |
[24] | Yang R., Zhou Y., Xing Y., Li D., Jiang D., Chen M., Shi W., Yuan S., Applied Catalysis B:Environmental,2019, 253, 131 |
[25] | Hobbs C., Jaskaniec S., McCarthy E. K., Downing C., Opelt K., Guth K., Shmeliov A., Mourad M. C. D., Mandel K., Nicolosi V., NPJ 2D Materials and Applications,2018, 2, 4 |
[26] | Abellan G., Coronado E., Marti-Gastaldo C., Pinilla-Cienfuegos E., Antonio R., J. Mater. Chem.,2010, 20, 7451 |
[27] | Xiao D., Liu G. B., Feng W., Xu X. Yao W., Phys. Rev. Lett., 2012, 108, 196802 |
[28] | Yao W., Xiao D., Niu Q., Phys. Rev. B, 2008, 77, 235406 |
[29] | Dean C. R., Wang L., Maher P., Forsythe C., Gao Y.,Katoch J., Ishigami M., Moon P., Koshino M., Taniguchi T., Watanabe K., Shepared K. L., Hone J., Kim P., Nature, 2013, 497, 598 |
[30] | ZhaoW., Ribeiro R. M.,Toh M., Carvalho A.,Kloc C., Castro Neto A.,Goki E., Nano Lett., 2013, 13, 5627 |
[31] | Zhang Y., Chang T. R., Zhou B., Cui Y. T., Yan H., Liu Z., Schmitt F., Lee J., Moore R., Chen Y., Lin H., Jeng H. T., Mo S. K., Hussain Z., Bansil A., Shen Z., Nature Nanotech., 2014, 9, 111 |
[32] | Mak K. F., He K., Shan J., Heinz T. F., Nature Nanotech., 2012, 7, 494 |
[33] | Jones A. M., Yu H., Ross J., Klement P., Ghimire N. J., Yan J., Mandrus D. G., Yao W., Xu X., Nature Phys., 2014, 10, 130 |
[34] | Song F., Hu X., Nature Commun.,2014, 5, 4477 |
[35] | Chen R., Hung S. F., Zhou D., Gao J., Yang C., Tao H., Yang H. B., Zhang L., Zhang L., Xiong Q., Chen H. M., Liu B., Adv. Mater.,2019, 31,1903909 |
[36] | Jiang Z., Zhou W., Hong A., Guo M., Luo X., Yuan C., ACS Energy Lett., 2019, 4, 2830 |
[1] | GAO Huimin, SHI Rui, ZHU Youliang, QIAN Hujun and LU Zhongyuan. Coarse-grained Dynamics Simulation in Polymer Systems: from Structures to Material Properties [J]. Chemical Research in Chinese Universities, 2022, 38(3): 653-670. |
[2] | YANG Miao, WANG Wenjing, SU Kongzhao, YUAN Daqiang. Dimeric Calix[4]resorcinarene-based Porous Organic Cages for CO2/CH4 Separation [J]. Chemical Research in Chinese Universities, 2022, 38(2): 428-432. |
[3] | QIAO Junyi, LIU Xinyao, ZHANG Lirong, LIU Yunling. Self-assembly of 3p-Block Metal-based Metal-Organic Frameworks from Structural Perspective [J]. Chemical Research in Chinese Universities, 2022, 38(1): 31-44. |
[4] | FENG Enduo, TIAN Yang. Surface-enhanced Raman Scattering of Self-assembled Superstructures [J]. Chemical Research in Chinese Universities, 2021, 37(5): 989-1007. |
[5] | Andy Shun-Hoi CHEUNG, Sammual Yu-Lut LEUNG, Franky Ka-Wah HAU, Vivian Wing-Wah YAM. Supramolecular Self-assembly of Amphiphilic Alkynyl-platinum(II) 2,6-Bis(N-alkylbenzimidazol-2'-yl) pyridine Complexes [J]. Chemical Research in Chinese Universities, 2021, 37(5): 1079-1084. |
[6] | HAN Lin, WANG Yuang, TANG Wantao, LIU Jianbing, DING Baoquan. Bioimaging Based on Nucleic Acid Nanostructures [J]. Chemical Research in Chinese Universities, 2021, 37(4): 823-828. |
[7] | REN Yiqing, LIU Xinlong, GE Huan, GUO Yuanyuan, ZHANG Qiushuang, XIE Miao, WANG Ping, ZHU Xinyuan, ZHANG Chuan. A Combinatorial Approach Based on Nucleic Acid Assembly and Electrostatic Compression for siRNA Delivery [J]. Chemical Research in Chinese Universities, 2021, 37(4): 906-913. |
[8] | YANG Jia, ZHENG Rui, AN Hongwei, WANG Hao. In vivo Self-assembled Peptide Nanoprobes for Disease Diagnosis [J]. Chemical Research in Chinese Universities, 2021, 37(4): 855-869. |
[9] | LIU Zhiyu, LIANG Gaolin, ZHAN Wenjun. In situ Activatable Peptide-based Nanoprobes for Tumor Imaging [J]. Chemical Research in Chinese Universities, 2021, 37(4): 889-899. |
[10] | LI Lun, XUE Xiaoxia, SUN Yimeng, ZHAO Wuduo, LI Tiesheng, LIU Minghua, WU Yangjie. Self-assembly Palladacycle Thiophene Imine Monolayer-Investigating on Catalytic Activity and Mechanism for Coupling Reaction [J]. Chemical Research in Chinese Universities, 2020, 36(5): 821-828. |
[11] | ZHANG Junjie, WANG Can, DUAN Ruomeng, PENG Chencheng, YANG Biao, CAO Nan, ZHANG Haiming, CHI Lifeng. Two-dimensional Molecular Phase Transition of Alkylated-TDPB on Au(111) and Cu(111) Surfaces [J]. Chemical Research in Chinese Universities, 2020, 36(4): 685-689. |
[12] | PAN Gaifang, MA Yuan, ZHANG Jiao, GUO Yuanyuan, DING Fei, GE Huan, LI Qifeng, ZHU Xinyuan, ZHANG Chuan. Engineering a Floxuridine-integrated RNA Prism as Precise Nanomedicine for Drug Delivery [J]. Chemical Research in Chinese Universities, 2020, 36(2): 274-280. |
[13] | LI Xue, YANG Donglei, SHEN Luyao, XU Fan, WANG Pengfei. Programmable Assembly of DNA-protein Hybrid Structures [J]. Chemical Research in Chinese Universities, 2020, 36(2): 211-218. |
[14] | WANG Congli, DI Zhenghan, FAN Zetan, LI Lele. Self-assembly of DNA Nanostructures via Bioinspired Metal Ion Coordination [J]. Chemical Research in Chinese Universities, 2020, 36(2): 268-273. |
[15] | YIN Jue, WANG Junke, NIU Renjie, REN Shaokang, WANG Dexu, CHAO Jie. DNA Nanotechnology-based Biocomputing [J]. Chemical Research in Chinese Universities, 2020, 36(2): 219-226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||