Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4): 643-647.doi: 10.1007/s40242-017-6501-7

• Articles • Previous Articles     Next Articles

Effect of Cu(Ⅱ) on Degradation and Decolorization of Rhodamine B in Subcritical Water

CHENG Kai1, YANG Wei1, WANG Hui1, ZHOU Jie1, WU Shengji1, YU Tianming2, PAN Jianbo2   

  1. 1. College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China;
    2. Tianlu Environment Technology Co., Ltd., Quzhou 324000, P. R. China
  • Received:2016-12-23 Revised:2017-01-24 Online:2017-08-01 Published:2017-05-08
  • Contact: WU Shengji E-mail:wu_shengji@hotmail.com
  • Supported by:

    Supported by the Natural Science Foundation of Zhejiang Province,China(No.LQ17B060006),the Science and Technology Planning Project of Zhejiang Province,China(No.2013C31016) and the National Natural Science Foundation of China(No.21406044).

Abstract:

In this paper, subcritical water, an environmentally friendly solvent, was employed to degrade rhodamine B, which served as a model dye in textile industrial effluents. The effect of Cu(Ⅱ) on the degradation of rhodamine B was evaluated. Further, the degradation kinetics of rhodamine B in subcritical water was evaluated via a Weibull model. The results show that subcritical water could efficiently degrade and decolorize rhodamine B. The addition of Cu(Ⅱ) into subcritical water could accelerate the degradation of rhodamine B and lower the temperature for its complete degradation. The Weibull equation could well express the degradation kinetics of rhodamine B. The calculated rate constants showed Arrhenius behavior and presented high correlation coefficients. The activation energy was 109.4 kJ/mol for subcritical water degradation of rhodamine B, whereas it became lower(93.4 kJ/mol) when Cu(Ⅱ) was added to the subcritical water. The frequency factors for the degradation of rhodamine B by subcritical water without and with Cu(Ⅱ) were calculated to be 1.0×1011 and 3.2×109 min-1, respectively. The above results indicate that subcritical water treatment is a promising process for degrading and decolorizing textile dyes. The results will provide a theoretic support for the industrial application of subcritical water treatment.

Key words: Subcritical water, Degradation kinetics, Rhodamine B, Weibull equation, Copper ion